Mini-Course Tensor Categories Wednesday

November 8, 2023

Review

Yesterday, we talked about

- Spherical categories
- Fusion categories, fusion rings
- Dimensions as ring characters

Braided Tensor Category

A braided tensor category is a tensor category C with a natural isomorphism $c_{X,Y} : X \otimes Y \simeq Y \otimes X$ called the braiding, such that the following two hexagon diagrams commute

Diagrams in Braided Tensor Categories

Symmetric Braided Fusion Categories

Vec and Rep(G) are braided fusion categories. The braidings are the transpositions of two tensor factors.

C is called symmetric if $c_{Y,X}c_{X,Y} = id_{X\otimes Y}$, for all objects $X, Y \in C$.

 $\operatorname{Rep}(G)$ is symmetric.

Another braiding on Rep(G) : choose a central element such that u² = 1, and set

$$\widetilde{c}_{XY}(x\otimes y)=(-1)^{mn}y\otimes x$$

if $ux = (-1)^m x$, $uy = (-1)^n y$. Denote this by $\operatorname{Rep}(G, u)$.

▶ [Delinge] Symmetric fusion category C is equivalent to some Rep(G, u) as braided fusion category up to isomorphism.

Pointed Braided Fusion Categories

- Recall: Every pointed fusion category C is equivalent to a category Vec^ω_G.
- C is braided \implies G = A is abelian.
- Quadratic form q on G $q: G \to \mathbb{C}^{\times}$ such that $q(g) = q(g^{-1})$ and the symmetric function $b(g, h) := \frac{q(gh)}{q(g)q(h)}$

is a bilinear.

Pointed braided tensor category is uniquely determined by (A, q), where A is an abelian group and q is a quadratic form on A.

More Examples of Braided Fusion Categories

- [Siehler00] Tambara-Yamagami fusion category admits a braiding if and only if G is an elementary abelian 2-group.
- From twisted quantum double: Rep (D^ωG), G finite, ω a 3-cocycle.
- From quantum group:

$$\mathfrak{g} \rightsquigarrow U_q \mathfrak{g} \stackrel{q = e^{\pi i/l}}{\leadsto} \operatorname{Rep} \left(U_q \mathfrak{g} \right) \stackrel{/\langle \operatorname{Ann}(Tr) \rangle}{\leadsto} \mathcal{C}(\mathfrak{g}, l)$$

See [EGNO Section 9.18.4] for a discussion on the construction of Rep ($C_q(G)$) from simply connected semisimple compact Lie group G.

Symmetric Center of a Braided Tensor Category

▶ The Müger center of a braided fusion category C is

$$\mathsf{Ob}(\mathcal{C}') = \{ X \in \mathcal{C} : c_{X,Y}c_{Y,X} = \mathsf{Id}_{Y \otimes X}, Y \in \mathcal{C} \}$$

- ▶ The Müger center of Rep(G) is itself.
- Braided fusion category C is called nondegenerate if its Müger center is trivial.
- Spherical braided fusion category is called modular if it is nondegenerate.

The Drinfeld Center Construction

For simplicity, let's assume C is a strict tensor category. An object of the $\mathcal{Z}(C)$ is a pair $(V, c_{-,V})$ where V is an object of C and $c_{-,V}$ is a family of natural isomorphisms

$$c_{X,V}: X \otimes V \to V \otimes X, \forall X \in \mathcal{C}$$

such that

$$c_{X\otimes Y,V} = (c_{X,V}\otimes \mathsf{id}_Y)(\mathsf{id}_X\otimes c_{Y,V})$$

- A morphism from (V, c_{-,V}) to (W, c_{-,W}) is a morphism f : V → W in C such that for each object X of C (f ⊗ id_X) c_{X,V} = c_{X,W} (id_X ⊗ f)
- $\mathcal{Z}(\mathcal{C})$ is a tensor category with unit $(\mathbf{1}, \mathrm{id})$.
- Z(C) is a strict braided tensor category.

The Drinfeld Center Construction

- Let H be a f.d. Hopf algebra with invertible antipode.
 Let D(H) = (H^{op})^{*} ⋈ H be the Drinfeld's Quantum Double of H.
- ► The braided tensor categories Z(Rep(H)) and Rep(D(H)) are equivalent.
- Z(C) of a fusion category C is a non-degenerate braided fusion category.
- $\mathcal{Z}(\mathcal{C})$ of a spherical fusion category \mathcal{C} is modular.

Let $\ensuremath{\mathcal{C}}$ be a braided tensor category, there is a braided tensor functor

$$G: \mathcal{C} \boxtimes \mathcal{C}^{\mathsf{rev}} \to \mathcal{Z}(\mathcal{C})$$

A braided tensor category C is called factorizable if the above functor is an equivalence.

Equivalent Conditions for Non-degeneracy

Let $\ensuremath{\mathcal{C}}$ be a spherical braided fusion category.

[EGNO, Bruguières00, Kerler-Lyubashenko01]

The Following Are Equivalent:

C is modular.

C is factorizable.

• The S matrix of C is invertible.

 \blacktriangleright C has a special Hopf paring that is non-degenerate.

Also see [Shimizu19] for a general case.