Mini-Course on Tensor Categories Tuesday

November 7, 2023

Yesterday, we discussed

- ▶ Definition of a tensor category and tensor functors.
- ▶ Rigid tensor category $X^* \otimes X \mapsto \mathbf{1} \mapsto X \otimes X^*$

Spherical Categories

▶ A pivotal monoidal category is a rigid monoidal category with a natural isomorphism j : Id $_\mathcal{C}\to (-)^{**}$ of monoidal functors.

$$
\blacktriangleright
$$
 Thus, $j_{V \otimes W} = j_V \otimes j_W$ for all $V, W \in \mathcal{C}$.

▶ Let $f: V \rightarrow V$ be a morphism in a pivotal category C.

The left and right quantum traces of f are

$$
\mathrm{tr}^L(f) = \left(1 \xrightarrow{\mathrm{coev}} V \otimes V^* \xrightarrow{f \otimes \mathrm{id}} V \otimes V^* \xrightarrow{j_V \otimes \mathrm{id}} V^{**} \otimes V^* \xrightarrow{\mathrm{ev}_{V^*}} 1\right)
$$

$$
\mathrm{tr}^R(f) = \left(1 \xrightarrow{\mathrm{coev}} V^* \otimes V^{**} \xrightarrow{V^* \otimes j_V^{-1}} V^* \otimes V \xrightarrow{\mathrm{id} \otimes f} V^* \otimes V \xrightarrow{\mathrm{ev}} 1\right)
$$

 \blacktriangleright If the left and right traces of every morphism are the same, then $\mathcal C$ is called a spherical category.

In this case, denote traces and dimensions by $tr(f)$ and $dim(V)$.

Diagrams in Spherical Categories

 \blacktriangleright If C is a strict tensor category, the spherical condition

 \triangleright Pivotal strictification allows us to drop the *i's*:

Quantum Traces and Quantum Dimensions

$$
tr f = \underbrace{f}_{\text{v}} \qquad \qquad \text{dim } V = \bigcirc_v
$$

$$
\blacktriangleright \;\; \text{tr}(f \otimes g) = \text{tr} \; f \; \text{tr} \; g, \quad \text{tr}(f^*) = \text{tr} \; f, \quad \text{tr}(fg) = \text{tr}(gf)
$$

\blacktriangleright In particular,

 $\dim(V \otimes W) = \dim V \dim W, \quad \dim V^* = \dim V$

▶ Quantum Dimension of C: dim(C) = $\sum_{X \in \text{Irr}(C)} (\text{dim } X)^2$

Additive Categories

We assume all tensor categories are additive, i.e.,

- Every set Hom (X, Y) is equipped with a structure of an abelian group such that composition of morphisms is biadditive with respect to this structure.
- ▶ There exists a zero object $0 \in \mathcal{C}$ such that $Hom(0, 0) = 0$.

▶ (Existence of direct sums.)

For any objects $X_1, X_2 \in \mathcal{C}$ there exists an object $Y \in \mathcal{C}$ and morphisms $p_1 : Y \to X_1, p_2 : Y \to X_2, i_1 : X_1 \to Y, i_2 :$ $X_2 \rightarrow Y$ such that $p_1 i_1 = \mathrm{id}_{X_1}, p_2 i_2 = \mathsf{id}_{X_2}$, and $i_1p_1 + i_2p_2 = id_Y$. The object Y is denoted by $X_1 \oplus X_2$, and is called the direct sum of X_1 and X_2 .

We further assume $\mathcal C$ is abelian (one can talk about kernels and cokernels of morphisms).

Semisimplicity

- An object X in an tensor category C is simple if End $X = \mathbb{C}$.
- An abelian category C is called semisimple if any object V is isomorphic to a direct sum of simple ones:

$$
V \simeq \bigoplus_{i \in \text{Irr } C} N_i V_i
$$

where V_i are simple objects, Irr C is the set of isomorphism classes of non-zero simple objects in $\mathcal{C}, N_i \in \mathbb{Z}_+$ and only a finite number of N_i are non-zero.

Example: $\mathsf{Rep}(G)$, G finite group, is semisimple by Maschke's Theorem:

Every representation of a finite group G over $\mathbb C$ is a direct sum of irreducible representations.

Unitarity implies Semisimplicity

- ▶ A unitary tensor category is a rigid C* tensor category with simple unit object such that all coherence isomorphisms are unitary.
- \triangleright [Longo-Roberts 97] Let C be a unitary tensor category. Then for any object X in C, $End(X)$ is finite dimensional.

In particular, C is semisimple.

See [Yamagami 02] for a structural proof.

Deligne Tensor Product of Tensor Categories

Let C_1, C_2 be additive categories over \mathbb{C} .

Their Deligne tensor product $C_1 \boxtimes C_2$ is the category with

▶ Objects: finite sums of the form

$$
\bigoplus X_i \boxtimes Y_i, \quad X_i \in \mathcal{C}_1, Y_i \in \mathcal{C}_2
$$

▶ Morphisms:

 $\mathsf{Hom}_{\mathcal{C}_1\boxtimes\mathcal{C}_2}\left(\bigoplus X_i\boxtimes Y_i,\bigoplus X_j'\boxtimes Y_j'\right)=\bigoplus_{i,j}\mathsf{Hom}\left(X_i,X_j'\right)\otimes\mathsf{Hom}\left(Y_i,Y_j'\right)$

Fusion Category

- A fusion category is a
	- \blacktriangleright semisimple
	- \blacktriangleright C-linear
	- \blacktriangleright rigid category with
	- \triangleright finite dimensional hom-sets, finitely many isomorphism classes of simple objects, and
	- \blacktriangleright tensor unit 1 is simple.
- Examples: $\mathsf{Rep}(G)$, Vec_G^{ω} .
	- ▶ Ocneanu rigidity: [Etingof-Nikshych-Ostrik05] Up to equivalence, there is a finite number of fusion categories with a given fusion ring.
	- ▶ Question: [Ostrik03] Are there finitely many equivalence classes of fusion categories with a given rank?

Fusion Ring

- \blacktriangleright Let C be a fusion category.
- \blacktriangleright Let Irr(C) denote the set of isomorphism classes of simple objects of C .
- \blacktriangleright Rank of $C : |$ Irr $(C)|$
- \blacktriangleright ∀X, $Y \in \text{Irr}(\mathcal{C})$

$$
X\otimes Y=\sum_{Z\in \mathsf{Irr}(\mathcal{C})}N_{X,Y}^ZZ
$$

called the fusion rules. N_{XY}^Z are called fusion coefficients.

Exect Cr(C) is the free abelian group with basis $\text{Irr}(\mathcal{C})$.

▶ The map $*$: $\text{Irr}(\mathcal{C}) \rightarrow \text{Irr}(\mathcal{C})$ is an involution and $\mathbf{1}^* = \mathbf{1}$ and make $Gr(\mathcal{C})$ into a fusion ring.

Fusion Ring

 \blacktriangleright Symmetries in the fusion coefficients:

Note the fusion coefficients satisfy

$$
N_{XY}^Z = \dim \text{Hom}(Z, X \otimes Y) = \dim \text{Hom}(\mathbf{1}, X \otimes Y \otimes Z^*)
$$

$$
N_{XY}^Z = N_{YX}^{Z} = N_{XZ^*}^{Y^*} = N_{X^*Y^*}^{Z^*}, \quad N_{XY}^1 = \delta_{XY^*}.
$$

- ▶ Quantum dimensions give a ring character: Recall dim(V) \in End(1) \cong \mathbb{C} .
	- ▶ dim $(V \otimes W) =$ dim V dim W,
	- \triangleright dim($V \oplus W$) = dim $V +$ dim W
	- \blacktriangleright dim(1) = 1
- ▶ [Etingof-Gelaki-Nikshych-Ostrik] Dimensions of objects in a fusion category are algebraic integers in C.

Frobenius-Perron Dimension

 \blacktriangleright Let N_X be the matrix with (Y, Z) -entry N_{XY}^Z for simple objects, which is called the fusion matrix.

 N_x is a squared matrix with nonnegative integers.

▶ Frobenius-Perron Theorem:

The largest eigenvalue of any square matrix with positive entries is real, is of multiplicity one, and has an eigenvector with strictly positive entries.

- \blacktriangleright Let the Frobenius-Perron dimension of X be the maximal eigenvalue of the fusion matrix N_X , $X \in \text{Irr}(\mathcal{C})$.
- \blacktriangleright The Frobenius-Perron dimension of C is FPdim $C = \sum_{X \in \text{Irr}(\mathcal{C})} (\text{FPdim } X)^2$.

Frobenius-Perron Dimension

▶ Frobenius-Perron dimensions give a character of the fusion ring:

 $FPdim(V \otimes W) = FPdim(V) \cdot FPdim(W)$, $FPdim(V \oplus W) = FPdim(V) + FPdim(W)$, $FPdim(1) = 1$

- Etingof-Nikshych-Ostrik05 Let $\mathcal C$ be a fusion category. $\forall X \in \mathsf{Irr}(\mathcal{C}), \ |X|^2 \leq \mathsf{FPdim}(X)^2.$ Thus $\mathsf{dim}(\mathcal{C}) \leq \mathsf{FPdim}(\mathcal{C}).$
- If C is unitary, $dim(X) > 0$ for all X.
- \blacktriangleright Moreover, dim (X) = FPdim (X) for all X.
- \triangleright A fusion category C is called pseudo-unitary if $dim(\mathcal{C}) = FPdim(\mathcal{C}).$
- ▶ [Etingof-Nikshych-Ostrik05] A pseudo-unitary fusion category admits a unique spherical structure s.t., $\dim_i(X) = \text{FPdim}(X)$ for every simple object X .

Some Classification Results by FP-dimensions

Let C be a fusion category.

 \triangleright [Etingof-Nikshych-Ostrik05] FPdim X is a cyclotomic integer >1 .

If FPdim(X) $<$ 2, for some $X \in \text{Irr}(\mathcal{C})$, then FPdim(X) = $2 \cos(\pi/n)$, for some integer $n \ge 3$.

 \triangleright [Calegari-Morrison-Snyder11]. Let X be an object in a fusion category such that FPdim X belongs to the interval $(2, 76/33]$. Then FPdim X is equal to one of:

$$
\frac{\sqrt{7}+\sqrt{3}}{2}, \quad \sqrt{5}, \quad 1+2\cos\left(\frac{2\pi}{7}\right), \quad \frac{1+\sqrt{5}}{\sqrt{2}}, \quad \frac{1+\sqrt{13}}{2}.
$$

- ► C is called integral if FPdim $X \in \mathbb{Z}$, $\forall X \in \mathcal{C}$. $\mathcal C$ is integral iff it is equivalent to the category of f.d representations of a f.d semisimple quasi-Hopf algebra over C.
- ▶ [Gelaki-Nikshych08] Every fusion category of odd integer Frobenius-Perron dimension is integral.

Fibonacci Category

Fibonacci Category

- \blacktriangleright Simple Object: **1**, τ
- \blacktriangleright Rank: 2
- **► Fusion Rules:** $\tau \otimes \tau = \mathbf{1} \oplus \tau$
- ▶ Quantum Dimensions: $d_1 = 1$, $d_7 = \frac{1+\sqrt{5}}{2}$ 2

Ising Category

Ising Category

- \triangleright Simple Object: 1, σ, ψ
- \blacktriangleright Rank: 3
- ▶ Fusion Rules:

$$
\sigma^2 = 1 + \psi, \quad \psi^2 = 1, \quad \psi\sigma = \sigma\psi = \sigma
$$

▶ Quantum Dimensions: $d_1 = 1$, $d_{\psi} = 1$, $d_{\sigma} = \sqrt{\frac{1}{2} \sum_{i=1}^{n} d_{\psi}^2}$ 2.

Observation: The objects 1 and ψ generate a fusion subcategory. Recall these are invertible objects in the category.

Pointed Fusion Categories

Recall an object X in C is invertible if

ev $_X:X^*\otimes X\to \mathbf{1}$ $\mathsf{coev}_X : \mathbf{1} \to X \otimes X^*$

are isomorphisms.

Notice X is invertible iff $FPdim(X) = 1$.

- A fusion category C is pointed if every simple object of C is invertible. A pointed subcategory of C is denoted by C_{pt} .
- Recall Vec $_G^{\omega}$ is pointed.
- \triangleright Every pointed fusion category is equivalent to a category Vec $_{G}^{\omega}$, for some 3-cocycle ω , where G is the group of invertible objects of \mathcal{C} .

Examples of Fusion Categories

 \triangleright Given a finite group G, the Tambara-Yamagami Fusion Category has label set $G \cup \{m\}$, where G is a group and $m \notin G$, with fusion rules

$$
g \otimes h = gh
$$
, $m \otimes g = g \otimes m = m$, $m^2 = \bigoplus_{g \in G} g$

for $g, h \in G$.

When $G = \mathbb{Z}_2$, this is the Ising fusion category.

\n- Rep(
$$
S_3
$$
)
\n- Simple objects: $1, \chi, V$
\n- Fusion rules: $\chi V = V \chi = V, \chi^2 = 1, V^2 = 1 + \chi + V$.
\n

Observation: In both categories, all but one simple object is invertible.

Near-group Fusion Categories

A near-group category is a fusion category $\mathcal C$ in which all but one simple object is invertible.

- ▶ Simple objects: $G \cup \{\rho\}$
- **►** Fusion rules: $g \rho = \rho g = \rho$ for all $g \in G$,

$$
\blacktriangleright \ \rho \otimes \rho = \mathsf{n}'\rho + \sum_{g \in G} g.
$$

$$
d_{\rho}=\frac{n'+\sqrt{n'^2+4n}}{2}
$$

- ▶ Denote near-group category with the above fusion rules by $G + n'$.
- ▶ [Evans-Gannon '14] Given a near-group category of type $G + n'$, the only possible values for n' are 0, $n - 1$, or $n' \in n\mathbb{Z}$, where $n = |G|$.
- \blacktriangleright [Tambara-Yamagami '98] The fusion categories of type $G + 0$ are completely classified.

Examples of Non-unitary Spherical Fusion Category

Yang-Lee Theory

- \blacktriangleright Simple Object: 1, $\bar{\tau}$
- \blacktriangleright Rank: 2
- ▶ Fusion Rules: $\bar{\tau} \otimes \bar{\tau} = 1 \oplus \bar{\tau}$
- ▶ Quantum Dimensions: $d_1 = 1$, $d_7 = \frac{1-\sqrt{5}}{2}$ 2
- $\mathsf{Vec}_{\mathbb{Z}_2}^-$: Category of \mathbb{Z}_2 -graded vector spaces
	- ▶ Simple Object: 1, a⁻
	- \blacktriangleright Rank: 2
	- ▶ Fusion Rules: $a^- \otimes a^- = 1$
	- ▶ Quantum Dimensions: $d_1 = 1$, $d_{2-} = -1$

Remark: There is another fusion category Vec_{\mathbb{Z}_2} with simple object a and a spherical *i* s.t. $d_a = 1$.