## Mini-Course on Tensor Categories Tuesday

November 7, 2023

Yesterday, we discussed

- Definition of a tensor category and tensor functors.
- Rigid tensor category  $X^* \otimes X \mapsto \mathbf{1} \mapsto X \otimes X^*$

## Spherical Categories

▶ A pivotal monoidal category is a rigid monoidal category with a natural isomorphism  $j : Id_C \to (-)^{**}$  of monoidal functors.

• Thus, 
$$j_{V\otimes W} = j_V \otimes j_W$$
 for all  $V, W \in C$ .

• Let  $f: V \to V$  be a morphism in a pivotal category C.

The left and right quantum traces of f are

$$\operatorname{tr}^{L}(f) = \left(\mathbf{1} \stackrel{\operatorname{coev}}{\longrightarrow} V \otimes V^{*} \stackrel{f \otimes \operatorname{id}}{\longrightarrow} V \otimes V^{*} \stackrel{j_{V} \otimes \operatorname{id}}{\longrightarrow} V^{**} \otimes V^{*} \stackrel{\operatorname{ev}_{V^{*}}}{\longrightarrow} \mathbf{1}\right)$$
$$\operatorname{tr}^{R}(f) = \left(\mathbf{1} \stackrel{\operatorname{coev}}{\longrightarrow} V^{*} \otimes V^{**} \stackrel{V^{*} \otimes j_{V}^{-1}}{\longrightarrow} V^{*} \otimes V \stackrel{\operatorname{id} \otimes f}{\longrightarrow} V^{*} \otimes V \stackrel{\operatorname{ev}}{\longrightarrow} \mathbf{1}\right)$$

If the left and right traces of every morphism are the same, then C is called a spherical category.

In this case, denote traces and dimensions by tr(f) and dim(V).

## **Diagrams in Spherical Categories**

 $\blacktriangleright$  If  ${\mathcal C}$  is a strict tensor category, the spherical condition



Pivotal strictification allows us to drop the j's:



#### Quantum Traces and Quantum Dimensions



$$\blacktriangleright \operatorname{tr}(f \otimes g) = \operatorname{tr} f \operatorname{tr} g, \quad \operatorname{tr}(f^*) = \operatorname{tr} f, \quad \operatorname{tr}(fg) = \operatorname{tr}(gf)$$

#### In particular,

 $\dim(V \otimes W) = \dim V \dim W, \quad \dim V^* = \dim V$ 

• Quantum Dimension of C: dim $(C) = \sum_{X \in Irr(C)} (\dim X)^2$ 

## Additive Categories

We assume all tensor categories are additive, i.e.,

- Every set Hom(X, Y) is equipped with a structure of an abelian group such that composition of morphisms is biadditive with respect to this structure.
- There exists a zero object  $0 \in C$  such that Hom(0,0) = 0.

(Existence of direct sums.)

For any objects  $X_1, X_2 \in C$  there exists an object  $Y \in C$  and morphisms  $p_1 : Y \to X_1, p_2 : Y \to X_2, i_1 : X_1 \to Y, i_2 :$  $X_2 \to Y$  such that  $p_1i_1 = id_{X_1}, p_2i_2 = id_{X_2}$ , and  $i_1p_1 + i_2p_2 = id_Y$ . The object Y is denoted by  $X_1 \oplus X_2$ , and is called the direct sum of  $X_1$  and  $X_2$ .

We further assume C is abelian (one can talk about kernels and cokernels of morphisms).

## Semisimplicity

- An object X in an tensor category C is simple if  $End X = \mathbb{C}$ .
- An abelian category C is called semisimple if any object V is isomorphic to a direct sum of simple ones:

$$V \simeq \bigoplus_{i \in \operatorname{Irr} \mathcal{C}} N_i V_i$$

where  $V_i$  are simple objects, Irr C is the set of isomorphism classes of non-zero simple objects in  $C, N_i \in \mathbb{Z}_+$  and only a finite number of  $N_i$  are non-zero.

Example: Rep(G), G finite group, is semisimple by Maschke's Theorem:

Every representation of a finite group G over  $\mathbb{C}$  is a direct sum of irreducible representations.

## Unitarity implies Semisimplicity

- A unitary tensor category is a rigid C\* tensor category with simple unit object such that all coherence isomorphisms are unitary.
- ► [Longo-Roberts 97] Let C be a unitary tensor category. Then for any object X in C, End(X) is finite dimensional.

In particular, C is semisimple.

See [Yamagami 02] for a structural proof.

Deligne Tensor Product of Tensor Categories

Let  $\mathcal{C}_1, \mathcal{C}_2$  be additive categories over  $\mathbb{C}$ .

Their Deligne tensor product  $\mathcal{C}_1 \boxtimes \mathcal{C}_2$  is the category with

Objects: finite sums of the form

$$\bigoplus X_i \boxtimes Y_i, \quad X_i \in \mathcal{C}_1, Y_i \in \mathcal{C}_2$$

Morphisms:

 $\mathsf{Hom}_{\mathcal{C}_1 \boxtimes \mathcal{C}_2} \left( \bigoplus X_i \boxtimes Y_i, \bigoplus X'_j \boxtimes Y'_j \right) = \bigoplus_{i,j} \mathsf{Hom} \left( X_i, X'_j \right) \otimes \mathsf{Hom} \left( Y_i, Y'_j \right)$ 

# **Fusion Category**

- A fusion category is a
  - semisimple
  - C-linear
  - rigid category with
  - finite dimensional hom-sets, finitely many isomorphism classes of simple objects, and
  - tensor unit 1 is simple.
- Examples:  $\operatorname{Rep}(G)$ ,  $\operatorname{Vec}_{G}^{\omega}$ .
  - Ocneanu rigidity: [Etingof-Nikshych-Ostrik05] Up to equivalence, there is a finite number of fusion categories with a given fusion ring.
  - Question: [Ostrik03] Are there finitely many equivalence classes of fusion categories with a given rank?

# **Fusion Ring**

- Let C be a fusion category.
- Let Irr(C) denote the set of isomorphism classes of simple objects of C.
- ▶ Rank of C : |Irr(C)|
- $\blacktriangleright \forall X, Y \in \mathsf{Irr}(\mathcal{C})$

$$X \otimes Y = \sum_{Z \in \mathsf{Irr}(\mathcal{C})} N_{X,Y}^Z Z$$

called the fusion rules.  $N_{XY}^Z$  are called fusion coefficients.

- Let  $Gr(\mathcal{C})$  is the free abelian group with basis  $Irr(\mathcal{C})$ .
- ▶ The map \* : Irr(C)  $\rightarrow$  Irr(C) is an involution and  $\mathbf{1}^* = \mathbf{1}$  and make Gr(C) into a fusion ring.

# **Fusion Ring**

Symmetries in the fusion coefficients:

Note the fusion coefficients satisfy

$$\begin{split} N_{XY}^{Z} &= \dim \operatorname{Hom}(Z, X \otimes Y) = \dim \operatorname{Hom}\left(\mathbf{1}, X \otimes Y \otimes Z^{*}\right) \\ N_{XY}^{Z} &= N_{YX}^{Z} = N_{XZ^{*}}^{Y^{*}} = N_{X^{*}Y^{*}}^{Z^{*}}, \quad N_{XY}^{1} = \delta_{XY^{*}}. \end{split}$$

Quantum dimensions give a ring character:
 Recall dim(V) ∈ End(1) ≅ C.

- dim $(V \otimes W)$  = dim V dim W,
- $\dim(V \oplus W) = \dim V + \dim W$

• dim(1) = 1

[Etingof-Gelaki-Nikshych-Ostrik] Dimensions of objects in a fusion category are algebraic integers in C.

#### Frobenius-Perron Dimension

Let N<sub>X</sub> be the matrix with (Y, Z)-entry N<sup>Z</sup><sub>XY</sub> for simple objects, which is called the fusion matrix.

 $N_X$  is a squared matrix with nonnegative integers.

Frobenius-Perron Theorem:

The largest eigenvalue of any square matrix with positive entries is real, is of multiplicity one, and has an eigenvector with strictly positive entries.

- ▶ Let the Frobenius-Perron dimension of X be the maximal eigenvalue of the fusion matrix  $N_X$ ,  $X \in Irr(C)$ .
- ► The Frobenius-Perron dimension of C is FPdim  $C = \sum_{X \in Irr(C)} (FPdim X)^2$ .

### Frobenius-Perron Dimension

Frobenius-Perron dimensions give a character of the fusion ring:

 $\begin{aligned} \mathsf{FPdim}(V \otimes W) &= \mathsf{FPdim}(V) \cdot \mathsf{FPdim}(W), \\ \mathsf{FPdim}(V \oplus W) &= \mathsf{FPdim}(V) + \mathsf{FPdim}(W), \ \mathsf{FPdim}(\mathbf{1}) = 1 \end{aligned}$ 

- [Etingof-Nikshych-Ostrik05] Let C be a fusion category.
  ∀X ∈ Irr(C), |X|<sup>2</sup> ≤ FPdim(X)<sup>2</sup>. Thus dim(C) ≤ FPdim(C).
- If C is unitary, dim(X) > 0 for all X.
- Moreover,  $\dim(X) = \operatorname{FPdim}(X)$  for all X.
- A fusion category C is called pseudo-unitary if dim(C) = FPdim(C).
- [Etingof-Nikshych-Ostrik05] A pseudo-unitary fusion category admits a unique spherical structure s.t., dim<sub>j</sub>(X) = FPdim(X) for every simple object X.

## Some Classification Results by FP-dimensions

Let  $\ensuremath{\mathcal{C}}$  be a fusion category.

► [Etingof-Nikshych-Ostrik05] FPdim X is a cyclotomic integer ≥ 1.

If  $\operatorname{FPdim}(X) < 2$ , for some  $X \in \operatorname{Irr}(\mathcal{C})$ , then  $\operatorname{FPdim}(X) = 2\cos(\pi/n)$ , for some integer  $n \ge 3$ .

[Calegari-Morrison-Snyder11]. Let X be an object in a fusion category such that FPdim X belongs to the interval (2,76/33]. Then FPdim X is equal to one of:

$$\frac{\sqrt{7}+\sqrt{3}}{2}, \quad \sqrt{5}, \quad 1+2\cos\left(\frac{2\pi}{7}\right), \quad \frac{1+\sqrt{5}}{\sqrt{2}}, \quad \frac{1+\sqrt{13}}{2}$$

C is called integral if FPdim X ∈ Z, ∀X ∈ C.
 C is integral iff it is equivalent to the category of f.d representations of a f.d semisimple quasi-Hopf algebra over C.
 [Gelaki-Nikshych08] Every fusion category of odd integer

Frobenius-Perron dimension is integral.

# Fibonacci Category

Fibonacci Category

- ▶ Simple Object: 1,  $\tau$
- Rank: 2
- ▶ Fusion Rules:  $\tau \otimes \tau = \mathbf{1} \oplus \tau$
- Quantum Dimensions:  $d_1 = 1$ ,  $d_{\tau} = \frac{1+\sqrt{5}}{2}$

# Ising Category

Ising Category

- Simple Object: **1**,  $\sigma$ ,  $\psi$
- Rank: 3
- Fusion Rules:

$$\sigma^2 = 1 + \psi, \quad \psi^2 = 1, \quad \psi \sigma = \sigma \psi = \sigma$$

• Quantum Dimensions:  $d_1 = 1$ ,  $d_{\psi} = 1$ ,  $d_{\sigma} = \sqrt{2}$ .

**Observation**: The objects 1 and  $\psi$  generate a fusion subcategory. Recall these are invertible objects in the category.

## Pointed Fusion Categories

• Recall an object X in C is invertible if

 $\operatorname{ev}_X: X^*\otimes X o \mathbf{1}$  $\operatorname{coev}_X: \mathbf{1} o X \otimes X^*$ 

are isomorphisms.

Notice X is invertible iff FPdim(X) = 1.

- A fusion category C is pointed if every simple object of C is invertible. A pointed subcategory of C is denoted by C<sub>pt</sub>.
- Recall  $\operatorname{Vec}_{G}^{\omega}$  is pointed.
- Every pointed fusion category is equivalent to a category Vec<sup>ω</sup><sub>G</sub>, for some 3-cocycle ω, where G is the group of invertible objects of C.

#### Examples of Fusion Categories

Given a finite group G, the Tambara-Yamagami Fusion Category has label set G ∪ {m}, where G is a group and m ∉ G, with fusion rules

$$g \otimes h = gh, \quad m \otimes g = g \otimes m = m, \quad m^2 = \bigoplus_{g \in G} g$$

for  $g, h \in G$ .

When  $G = \mathbb{Z}_2$ , this is the Ising fusion category.

► Rep(
$$S_3$$
)  
Simple objects: 1,  $\chi$ ,  $V$   
Fusion rules:  $\chi V = V\chi = V, \chi^2 = 1, V^2 = 1 + \chi + V$ .

**Observation:** In both categories, all but one simple object is invertible.

## Near-group Fusion Categories

A near-group category is a fusion category  ${\cal C}$  in which all but one simple object is invertible.

- Simple objects:  $G \cup \{\rho\}$
- Fusion rules:  $g\rho = \rho g = \rho$  for all  $g \in G$ ,

$$\triangleright \ \rho \otimes \rho = n'\rho + \sum_{g \in G} g.$$

$$d_\rho = \frac{n' + \sqrt{n'^2 + 4n}}{2}$$

- Denote near-group category with the above fusion rules by G + n'.
- ▶ [Evans-Gannon '14] Given a near-group category of type G + n', the only possible values for n' are 0, n 1, or  $n' \in n\mathbb{Z}$ , where n = |G|.
- [Tambara-Yamagami '98] The fusion categories of type G + 0 are completely classified.

Examples of Non-unitary Spherical Fusion Category

Yang-Lee Theory

- Simple Object: 1,  $\bar{\tau}$
- Rank: 2
- Fusion Rules:  $\bar{\tau} \otimes \bar{\tau} = 1 \oplus \bar{\tau}$

• Quantum Dimensions:  $d_1 = 1$ ,  $d_{\tau} = \frac{1-\sqrt{5}}{2}$ 

 $Vec_{\mathbb{Z}_2}^-$ : Category of  $\mathbb{Z}_2$ -graded vector spaces

- ▶ Simple Object: 1, a<sup>-</sup>
- Rank: 2
- Fusion Rules:  $a^- \otimes a^- = \mathbf{1}$
- Quantum Dimensions:  $d_1 = 1$ ,  $d_{a^-} = -1$

**Remark:** There is another fusion category  $Vec_{\mathbb{Z}_2}$  with simple object *a* and a spherical *j* s.t.  $d_a = 1$ .