### Mini-Course Tensor Categories Thursday

November 9, 2023

### Review

Yesterday, we talked about

- Braided Tensor categories
- Symmetric centers of braided fusion categories
- Drinfeld Centers Z(C)
- Example:  $\mathcal{Z}(\operatorname{Rep}(\mathbb{Z}_2))$  gives us Toric Code

 $\mathsf{FPdim}(\mathcal{Z}(\mathcal{C})) = (\mathsf{FPdim}(\mathcal{C}))^2$ 

### Frobenius Algebras in Tensor Categories

Let C be a (strict) tensor category.

A Frobenius algebra in  $C : (A, \mu, \eta, \Delta, \varepsilon)$ , where

 $A \in \mathcal{C}, \ \mu : A \otimes A \to A, \ \eta : \mathbf{1} \to A, \ \Delta : A \to A \otimes A, \ \varepsilon : A \to \mathbf{1},$ 

- $(A, \mu, \eta)$  an associative unital algebra,
- (A, Δ, ε) is a coassociative counital coalgebra, such that the Frobenius condition holds:

$$(1 \otimes \mu) \circ (\Delta \otimes 1) = \Delta \circ \mu = (\mu \otimes 1) \circ (1 \otimes \Delta)$$

# Module Categories

Let  $C = (C, \otimes, \mathbf{1}, \alpha, l, r)$  be a monoidal category. A left module category over C is a category  $\mathcal{M}$  equipped with

• a bifunctor 
$$\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$$

a module associativity constraint

$$m_{X,Y,M}: (X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes (Y \otimes M), \quad X, Y \in \mathcal{C}, M \in \mathcal{M}$$

unit constraint

$$I_M: \mathbf{1} \otimes M \xrightarrow{\sim} M$$

such that the pentagon diagram and the triangle diagram commute.

### Module Categories



Triangle Axiom



▶ We can further define *C*-module functor  $\zeta_{X,M} : F(X \otimes M) \to X \otimes F(M), \quad X \in C, M \in M$ satisfying certain conditions.

# Algebra in a Tensor Category

An algebra in  $A \in C$  is a triple (A, m, u), where

- multiplication morphism  $m: A \otimes A \rightarrow A$
- unit morphism  $u: \mathbf{1} \to A$

such that the following diagrams commute



# Examples of Algebras in Monoidal Categories

#### Recall our convention: Tensor Category = Monoidal + $\mathbb{C}$ -linear

| Monoidal Category $(\mathcal{C},\otimes,1)$     | Algebra Objects                    |
|-------------------------------------------------|------------------------------------|
| $(\mathrm{Ab},\otimes_{\mathbb{Z}},\mathbb{Z})$ | Rings                              |
| $Vec_{\mathrm{fd}},Vec$                         | (f.d.) unital associative algebra  |
| Vec <sub>G</sub>                                | G-graded algebra                   |
| $\operatorname{Rep}(G)$                         | Fun(G) - algebra of functions on G |
| $(End_{\mathcal{C}}, \circ, \mathrm{Id})$       | Monads                             |

### Modules over Algebras

A right A-module in C is a pair (M, p), where

- ►  $M \in C$
- ▶  $p: M \otimes A \rightarrow M$  is a morphism such that the following diagrams commute



### Category of A-modules

• Let  $Mod_{\mathcal{C}}(A)$  be the category of right A-modules in  $\mathcal{C}$ .

▶ Then Mod<sub>C</sub>(A) is a left C-module category with the action:

$$(X \otimes M) \otimes A \stackrel{\alpha_{X,M,A}}{\longrightarrow} X \otimes (M \otimes A) \stackrel{\mathsf{id}_X \otimes p}{\longrightarrow} X \otimes M$$

• Two algebras A and B in C are Morita equivalent if

 $\operatorname{Mod}_{\mathcal{C}}(A) \cong \operatorname{Mod}_{\mathcal{C}}(B)$ 

are equivalent C-module categories.

- Let *M* be a semisimple indecomposable module category over *C*.
- [Ostrik03] There exist semisimple indecomposable algebra A ∈ C such that M ≅ Mod<sub>C</sub>(A) as module categories.

### Categorical Morita Equivalence Reference: [Müger03], [Etingof-Nikshych-Ostrik05]

Let  $\ensuremath{\mathcal{C}}$  be a fusion category.

• Let  $\mathcal{M}$  be an indecomposable right  $\mathcal{C}$ -module category  $\mathcal{M}$ .

The category of C-module endofunctors  $\mathcal{C}^*_{\mathcal{M}}$  on  $\mathcal{M}$  is a fusion category, which is called the dual of C with respect  $\mathcal{M}$ .

 $\blacktriangleright$  C and D are categorically Morita equivalent if

$$\mathcal{C}^*_{\mathcal{M}} \cong \mathcal{D}$$

for some indecomposable right  $\mathcal C\text{-module}$  category  $\mathcal M.$ 

Example:

$$(\operatorname{Vec}_G)^*_{\operatorname{Vec}} \cong \operatorname{Rep}(G),$$

thus  $Vec_G$  and Rep(G) are Morita equivalent.

• If C and D are Morita equivalent, then

 $\mathsf{FPdim}(\mathcal{C}) = \mathsf{FPdim}(\mathcal{D})$ 

# Categorical Morita Equivalence

Let  ${\mathcal C}$  and  ${\mathcal D}$  be fusion categories.

[Etingof-Nikshych-Ostrik]
 C and D are Morita equivalent if and only if

$$\mathcal{Z}(\mathcal{C})\cong\mathcal{Z}(\mathcal{D})$$

as braided fusion categories.

A fusion category C is called group-theoretical if it is Morita equivalent to a pointed fusion category.

# Further Reference on Frobenius Algebras in Tensor Categories

- [Müger03] From subfactors to categories and topology I: Frobenius algebras in and Morita equivalence of tensor categories
- [Bischoff-Kawahigashi-Longo-Rehren15]
  Tensor Categories and Endomorphisms of von Neumann Algebras
- [Carqueville-Runkel-Schaumann18]
  Orbifolds of Reshetikhin–Turaev TQFTs
- [Mulevičius-Runkel23]

Constructing modular categories from orbifold data