
Mini-Course on Tensor Categories Monday

Roberto Hernández Palomares, University of Waterloo
https://www.math.uwaterloo.ca/ r5hernan/

Qing Zhang, UC Santa Barbara

November 6, 2023

https://www.math.uwaterloo.ca/~r5hernan/


Landscape: vN vs C*

Goal: Transfer(ence) of subfactor techniques to C*-algebras

von Neumann Algebras

Classification:
▶[MvN43, Con76] Injective factors:
———- M ⊗R ∼= M
∃! hyperfinite II1-factor:
———- R ∼= R⊗R

Subfactors: N ⊂ M (Survey: [Pop23])

▶[Jon83] Index Rigidity Theorem:
[M : N] ∈ {4 cos2 π

n }n≥3 ∪ [4,∞].
N ⊂ M↭ quantum symmetry:
{N ⊂ M} ↔ {C ↷ N+generator}

C*-algebras

Elliott Program: (Survey: [Whi23])

▶ ’Many hands’ [GLN14, EGLN15, TWW17]

Classify simple amenable C*-algs
by K -theory and traces
Feat: Z,O2,On,O∞,AF,Aθ, ...

C*-inclusions: A ⊂ B [HPN23]

♡ C*-algs have QuSymmetry!
♣ Characterization of framework
♢ Classification of QuDynamics?
♠ Interactions with K-theory



Natural habitat for Unitary Tensor Categories (UTC)

Discrete &
compact groups:

∩
Discrete/compact
quantum gps [NT13]:

∩
Subfactors: The
standard invariant
[Ocn88, Pop95a, Jon22, Müg03]

◦ Hilbf(Γ)
• Hilbf(Γ, ω), [ω] ∈ H3(G ,T)
• • Repf(G )

•
{
G
}

T-K-W←→

Repf(G)
⊗→ Hilbf︸ ︷︷ ︸

Fiber functor



{
N ⊂ M

}
↔

 CN⊂M
⊗→ Bim(N)︸ ︷︷ ︸

generalized fiber functor

+ Q := NL
2(M)N︸ ︷︷ ︸

Q-system [Lon84]


▷ (N ⊂ M) ∼= (N ⊂ N ⋊ Q)
▶ Every C comes from LF∞ ∼= N ⊂ M ∼= LF∞ [PS03]



Subfactors and their standard invariants

Realization/Crossed Products: [ILP98, JP19]

{N ⊂ M} ←−
⋊Q

{
CN⊂M

⊗→ Bim(N) + Q := NL
2(M)N

}
⇝ (N ⊂ M) ∼= (N ⊂ N ⋊ Q)

Subfactor Classification

P1 Analytic/Dynamical: Construct & classify {C ↷ N},
P2 Algebraic: Construct & classify Q-sys/W*-algebras {Q ∈ C}.

Example (Hyperfinite Subfactors R ∼= N ⊂ M ∼= R [Pop94, Pop95b])

Standard invariant is complete for amenable hyperfinite subfactors!



C* Quantum dynamics

C*-algebras have quantum symmetry too!

▶ Every UTC from some C*-inclusion [HHP20]

▶ C*-algebras are Q-system complete [CHPJP22]

C*-inclusions
Standard invariants transfer to C*-inclusions [HPN23]:{
C ⊗→ Bim(A) + C-graded C∗-Alg B︸ ︷︷ ︸

C* Quantum Dynamics

}
⇝

{
A

E
⊂ A⋊r B

}

Known: Largest class {A ⊂ B} determined by standard invariant

Future problems

▶ Construct/classify C* Qudynamics (on classifiables)

▶ Robustness of classifiable C* by discrete extensions



Content of Minicourse

1. Introduction and UTC examples

2. Fundamentals of tensor categories

3. Unitarity in tensor categories, Index theory and Concrete
examples

4. Q-systems & algebra objects, and the standard invariant

5. Actions of UTCs on C*-algebras and their crossed products by
example
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Tensor Category

Example: Rep(G ), category of finite dimensional representations
of a finite group G over C.
▶ Objects: representations of G over C

▶ Morphisms: Interwiners

A tensor category C over C is category that is

▶ monoidal: (⊗, 1)

▶ C-linear: Hom(X ,Y ) is C-vector space and composition is
bilinear.



Tensor Categories
A tensor category (C,⊗, 1, α, l , r) is a C-linear category C with
▶ a tensor product functor

⊗ : C × C → C,

▶ a unit object
1 ∈ C

▶ an associativity constraint α,

α : (−⊗−)⊗− ∼−→ −⊗ (−⊗−)

▶ a left unit constraint

lX : 1⊗ X
∼−→ X ,

▶ a right unit constraint

rX : X ⊗ 1
∼−→ X ,



Tensor Categories

and the data (C,⊗, 1, α, l , r) satisfies
▶ the Pentagon Axiom

(W ⊗ X )⊗ (Y ⊗ Z )

((W ⊗ X )⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z ))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z )

αW⊗X ,Y ,Z αW ,X ,Y⊗Z

idW ⊗αX ,Y ,Z
αW ,X⊗Y ,Z

αW ,X ,Y⊗idZ

▶ Triangle Axiom

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

αX ,1,Y

rX⊗idY idX ⊗lY

▶ The tensor category is said to be strict if α, l , r are all
identities.



Example: Category of Vector Spaces

▶ C = VecC, the category of vector spaces over C.

▶ ⊗ is the tensor product of vector spaces over C.

▶ 1 = C is the ground field C.

▶ associativity

α((u ⊗ v)⊗ w) = u ⊗ (v ⊗ w),

for u ∈ U, v ∈ V ,w ∈W .

▶ unit constraints

l(1⊗ v) = v = r(v ⊗ 1)



VecωG : Category of G -graded Vector Spaces

▶ Objects: G -graded f.d. vector spaces V =
⊕

g∈G Vg .

▶ Morphisms: linear maps which preserve the grading.

▶ If V = ⊕g∈GVg and W = ⊕g∈GWg , then

(V ⊗W )g =
⊕
h∈G

Vh ⊗Wh−1g

▶ 1 = Ce , and associativity

αV ,W ,Z : (V ⊗W )⊗ Z → V ⊗ (W ⊗ Z )

(vg ⊗ wh)⊗ zk 7→ ω(g , h, k)vg ⊗ (wh ⊗ zk) ,

g , h, k ∈ G , vg ∈ Vg ,wh ∈Wh, zk ∈ Zk .

▶ ω is a 3-cocycle: ω : G × G × G → C× such that

ω(ab, c , d)ω(a, b, cd) = ω(a, b, c)ω(a, bc, d)ω(b, c , d)



Tensor Categories from Representations

Rep(G ), G a group.

▶ Objects: representations of G over k,

▶ Morphisms: interwiners,

▶ ⊗ is the tensor product of representations

ρV⊗W (g) := ρV (g)⊗ ρW (g)

Rep(g), g a Lie algebra over C

▶ ⊗ is defined by

ρV⊗W (a) = ρV (a)⊗ idW + idV ⊗ ρW (a)



Temperley-Lieb Diagrams

Let t be an indeterminant over C and d =
(
t + t−1

)
.

Let m, n ∈ {0, 1, 2, . . .} and m − n even.

The (m, n)-TL diagrams

Figure: A (5, 7)-TL Diagram



Composing Temperley-Lieb Diagrams



Temperley-Lieb Categories

The generic Temperley-Lieb category is a tensor category with

▶ objects: elements of N0 = {0, 1, 2, . . .}.

▶ morphisms

If n −m is odd, then Hom(m, n) is the 0 -vector space.

If n −m even, Hom(m, n) is the C(t)-vector space with basis
the set of equivalence classes of (m, n)-TL diagrams.

▶ tensor product

on objects: n ⊗ n′ = n + n′.

on morphisms: horizontal juxtaposition.

Tensoring an (n,m)-TL diagram with an (n′,m′)-diagram
gives a (n + n′,m +m′)- TL diagram.



Graphical Calculus for Morphisms

Let C be a strict tensor category.

▶ f : U → V

U

V

f ,

V

V

Id =

V

V

▶ f ◦ g

U

W

f ◦ g =

U

W

g

f

V



Graphical Calculus for Morphisms

▶ f ⊗ g

f ⊗ g = f g

▶ f ⊗ g = (f ◦ id)⊗ (id ◦ g) = (id ◦ f )⊗ (g ◦ id)

f g =

f

g
=

f

g



Dagger Category

We say that C is a dagger category if and only if for each X ,Y ∈ C
there is an anti-linear map

† : Hom(X ,Y )→ Hom(Y ,X )

such that

▶
(
f †
)†

= f , for any X ,Y ∈ C and f ∈ Hom(X ,Y ).

▶ (f ◦ g)† = g † ◦ f †

▶ (f ⊗ g)† = f † ⊗ g †

We say that f ∈ Hom(X ,Y ) is unitary if it is invertible with
f −1 = f †.

▶ Examples:

Hilb, the category of complex Hilbert spaces.

Hilb(Γ, ω), the category of ω-twisted complex Γ- graded
Hilbert spaces.



C∗ Category

A dagger category C is called a C∗-category if

▶ For every X ,Y ∈ C and f ∈ Hom(X ,Y ), there is a
g ∈ End(X ) such that f † ◦ f = g † ◦ g .

▶ The function ∥ · ∥ : Hom(X ,Y )→ [0,∞] defined by

∥f ∥2 = sup
{
|λ| ≥ 0 | f † ◦ f − λidX is not invertible

}
is a complete norm on Hom(X ,Y ).

▶ ∥f ◦ g∥ ≤ ∥f ∥ · ∥g∥

▶
∥∥f † ◦ f ∥∥ = ∥f ∥2



Tensor Functor

Let C = (C,⊗, 1, α, l , r) and D = (D,⊗′, 1′, α′, l ′, r ′) be tensor
categories.
A (strong) tensor functor from C to D is a functor F : C → D with
a isomorphism F0 : 1′ → F (1) in D and with a natural isomorphism

F2(X ,Y ) : F (X )⊗′ F (Y )→ F (X ⊗ Y )

such that

(F (X )⊗′ F (Y ))⊗′ F (Z ) F (X )⊗′ (F (Y )⊗′ F (Z ))

F (X ⊗ Y )⊗′ F (Z ) F (X )⊗′ F (Y ⊗ Z )

F ((X ⊗ Y )⊗ Z ) F (X ⊗ (Y ⊗ Z ))

F2(X ,Y )⊗′idF (Z)

F2(X⊗Y ,Z)

α′
F (X ),F (Y ),F (Z)

idF (X ) ⊗′F2(Y ,Z)

F2(X ,Y⊗Z)

F(αX ,Y ,Z)



Tensor Functor

1′ ⊗′ F (X ) F (X ) F (X )⊗′ 1′ F (X )

F (1)⊗′ F (X ) F (1⊗ X ), F (X )⊗′ F (1) F (X ⊗ 1)

l ′
F (X )

F0⊗idF (X ) F (lX )

F2(1,X )

r ′
F (X )

idF (X ) ⊗F0

F2(X ,1)

F (rX )

commute.

A natural transformation of tensor functors
η : (F ,F0,F2)→ (G ,G0,G2) is a natural transformation
η : F → G such that η1 is an isomorphism, and

ηX⊗Y F2(X ,Y ) = G2(X ,Y )
(
ηX ⊗′ ηY

)



Examples of Tensor Functors

Let A be a unital C∗-algebra and Γ be a discrete group acting on A.

Then we have a tensor functor F

F : Hilb(Γ)→ Bim(A)

Cg 7→ gA

where gA is a is A as a right Hilbert A-module and

a ▷ b = g−1(a)b

The tensorator for F is

F g ,h
2 : F (g)⊗A F (h) ∼= F (gh)

a⊗ b 7→ h−1(a)b.

This can be generalized to anomalous actions on a C∗-algebra.



Duality in VecC

Consider VecC, the category of f.d. vector spaces over C.

▶ ∀V ∈ Ob(VecC), ∃V ∗, and morphisms

evV :V ∗ ⊗ V → C,
coevV :C→ V ⊗ V ∗,

▶ evV is the evaluation map,

▶ coevV (1) :=
∑

vi ⊗ v i , {vi} and
{
v i
}
are dual bases in V

and V ∗.



Duality in Tensor Categories

▶ Let C be a tensor category and X ∈ C. A left dual of X is an
object X ∗ with

evX : X ∗ ⊗ X → 1, coevX : 1→ X ⊗ X ∗,

such that the composition

X
coevX ⊗idX−→ X ⊗ X ∗ ⊗ X

idX ⊗ evX−→ X

X ∗ idX∗⊗coevX−→ X ∗ ⊗ X ⊗ X ∗ evX ⊗ idX∗−→ X ∗

are identities.

▶ Similarly, one can define right dual (∗X , ev′X , coev
′
X ) of X .

▶ A tensor category C is called rigid if every object of C has
right and left duals.



Dual Morphism

If X ,Y ∈ C which have left duals X ∗,Y ∗ and f : X → Y is a
morphism.

Define the left dual f ∗ : Y ∗ → X ∗ of f by

f ∗ := Y ∗ idY∗ ⊗ coevX−→ Y ∗⊗X⊗X ∗ idY∗ ⊗f⊗idX∗−→ Y ∗⊗Y⊗X ∗ evY ⊗ idX∗−→ X ∗.

Similarly, one can define the right dual ∗f : ∗Y → ∗X of f .



Graphical Calculus for Rigidity
▶ evX and coevX

evX

1

X X

X
= , coevX

1

X X

X
=

▶ The graphical form of rigidity axioms

X

=

X

,

X

=

X

.

Recall

X
coevX ⊗ idX−→ X ⊗ X ∗ ⊗ X

idX⊗evX−→ X

X ∗ idX∗⊗coevX−→ X ∗ ⊗ X ⊗ X ∗ evX⊗idX∗−→ X ∗



Graphical Calculus for Rigidity
▶ The left dual f ∗ : Y ∗ → X ∗

Recall

f ∗ := Y ∗ idY∗ ⊗ coevX−→ Y ∗⊗X⊗X ∗ idY∗ ⊗f⊗idX∗−→ Y ∗⊗Y⊗X ∗ evY ⊗ idX∗−→ X ∗.

▶ Let f : V →W , g : U → V be morphisms in C, then

(f ◦ g)∗ = g∗ ◦ f ∗

(idV )
∗ = idV ∗



Useful Adjunctions

For any family U,V ,W of objects of C, we have natural bijections

Hom(U ⊗ V ,W ) ∼= Hom (U,W ⊗ V ∗)

and
Hom (U∗ ⊗ V ,W ) ∼= Hom(V ,U ⊗W )



Examples of Rigid Tensor Categories

▶ VecωG with normalized cocycle ω.

C∗
g = ∗Cg = Cg−1

Normalize the coevaluation morphisms of Cg to be the
identities. Then

evCg = ω
(
g , g−1, g

)
id1

▶ RepG . For a finite dimensional representation V ,

▶ the dual representation V ∗ is the usual dual space

▶ G -action is given ρV ∗(g) =
(
ρV (g)

−1
)∗



Invertible Objects

▶ Let C be a rigid tensor category.

▶ An object X in C is invertible if

evX : X ∗ ⊗ X → 1

coevX : 1→ X ⊗ X ∗

are isomorphisms.
▶ Examples:

▶ The objects Cg in VecωG are invertible.

▶ The invertible objects in Rep(G ) are the 1-dimensional
representations of G .

▶ The invertible objects of C form a tensor subcategory Inv(C)
of C.



Plan for Tomorrow

▶ Pivotal structure, Categorical trace, Spherical categories

▶ Fusion categories

▶ ...
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