Super-modular categories from near-group centers

Qing Zhang

Purdue University

Joint work with Eric Rowell and Hannah Solomon

Motivation

Modular category with modular data (S,T).

- (S,T) gives a projective representation $\bar{\rho}$ of $\mathrm{SL}_2(\mathbb{Z})$.
- [Ng-Schauenburg '10] If $N = \operatorname{ord}(T)$, $\bar{\rho}$ factors through $\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$.
- [Ng-Rowell-Wang-Wen '22] Reconstruction of modular data from irreducible representations of $\mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$.

Super-modular category with (\hat{S}, \hat{T}) .

- (\hat{S}, \hat{T}^2) gives a projective representation $\hat{\rho}$ of $\Gamma_{\theta} < \mathrm{SL}_2(\mathbb{Z})$.
- [Bonderson-Rowell-Wang-Z'19] $\hat{\rho}\left(\Gamma_{\theta}\right)$ is a finite group assuming minimal modular extension.
- [Cho-Kim-Seo-You '22] Unrealized (S,T) for super-modular categories.

Modular Tensor Categories

 A pre-modular category C over C is monoidal: (⊗, 1),

semisimple: $X \cong \bigoplus_i m_i X_i$,

linear: $\operatorname{Hom}(X,Y) \in \operatorname{Vec}_{\mathbb{C}}$,

rigid: $X^* \otimes X \mapsto \mathbf{1} \mapsto X \otimes X^*$,

finite rank: finitely many simple objects X_i ; 1 is simple,

braided: $\beta_{X,Y}:X\otimes Y\cong Y\otimes X$,

spherical: $j : \mathrm{id}_{\mathcal{C}} \stackrel{\cong}{\to} (-)^{**}$.

Plus compatibility conditions.

Modular Tensor Categories

- A premodular category $\mathcal C$ over $\mathbb C$ is a spherical braided fusion category.
 - $T_{X,Y} := \delta_{X,Y} \theta_X, X, Y \in \operatorname{Irr}(\mathcal{C}).$ Ribbon structure $\theta : \operatorname{id}_{\mathcal{C}} \to \operatorname{id}_{\mathcal{C}}.$ If $X \in \operatorname{Irr}(\mathcal{C})$, then θ_X is a nonzero scalar multiple of $\operatorname{id}_X.$
 - $S_{X,Y} := \operatorname{tr}(\beta_{Y,X^*} \circ \beta_{X^*,Y}), X, Y \in \operatorname{Irr}(\mathcal{C}).$
- \bullet \mathcal{C} is modular if S is invertible.
- The pair of matrices (S,T) is called the modular data of C.
- Dimensions: $d_X := S_{1,X}$, $\dim(\mathcal{C}) = D^2 = \sum_X d_X^2$.
- Fusion rule: $X \otimes Y = \bigoplus N_{XY}^Z Z$.

Fusion coefficients: $N_{X,Y}^Z = \dim \operatorname{Hom}(X \otimes Y, Z)$.

Examples of Modular Tensor Categories

 \bullet Pointed: $\mathcal{C}(A,Q),$ abelian group A, non-deg. quadratic form Q on A.

• From quantum groups:

$$\mathfrak{g} \leadsto U_q \mathfrak{g} \stackrel{q=e^{\pi i/l}}{\leadsto} \operatorname{Rep} (U_q \mathfrak{g}) \stackrel{/\langle \operatorname{Ann}(\operatorname{Tr}) \rangle}{\leadsto} \mathcal{C}(\mathfrak{g}, l)$$

ullet The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of a spherical fusion category $\mathcal{C}.$

Objects of $\mathcal{Z}(\mathcal{C})$ are (Z,γ) , where Z is an object of \mathcal{C} and γ is half braiding.

$\mathrm{SL}_2(\mathbb{Z})$ Representation

Given a modular category with (unnormalized) modular data (S,T).

- $S^4 = \dim(\mathcal{C})^2 \operatorname{Id}$, $(ST)^3 = p^+ S^2$, where $p^{\pm} = \sum_i \theta_i^{\pm} d_i^2$.
- ullet $\operatorname{SL}_2(\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \rangle$, where $\mathfrak{s} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\mathfrak{t} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- $\mathfrak{s}^4 = \mathrm{Id}$, $(\mathfrak{st})^3 = \mathfrak{s}^2$.
- $\mathfrak{s} \mapsto S$, $\mathfrak{t} \mapsto T$ gives a projective representation $\bar{\rho}_{\mathcal{C}}$ of $\mathrm{SL}_2(\mathbb{Z})$.
- $H < \mathrm{SL}_2(\mathbb{Z})$ is called a congruence subgroup if H contains some $\Gamma(n) := \{A \in \mathrm{SL}(2,\mathbb{Z}) : A \equiv I \pmod{n} \}.$
- $\mathrm{SL}_2(\mathbb{Z})/\Gamma(n) \cong \mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$ for all n > 1.
- [Ng-Schauenburg '10]

If $N = \operatorname{ord}(T)$,

- $\bar{
 ho}_{\mathcal{C}}$ factors through $\mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$.
- $\mathbb{Q}(S) \subset \mathbb{Q}(\zeta_N)$, $N = \operatorname{ord}(T)$.

$\mathrm{SL}_2(\mathbb{Z})$ Representation (continued)

- $ullet s:=rac{1}{\sqrt{\dim(\mathcal{C})}}\,S$ and $t:=rac{1}{\gamma}\,T$, where γ is any third root of the multiplicative central charge $\xi=p^+(\mathcal{C})/\sqrt{\dim(\mathcal{C})}$.
- $\mathfrak{s} \mapsto s$, $\mathfrak{t} \mapsto t$ gives a linear representation ρ of $\mathrm{SL}_2(\mathbb{Z})$.
- [Dong-Lin-Ng '15]

If $n = \operatorname{ord}(t)$,

- ρ factors through $\mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$
- $\bullet \ \operatorname{im}(\rho) \subset \operatorname{GL}_r(\mathbb{Q}(\zeta_n))$

Modular Data from $SL_2(\mathbb{Z})$ Representations

Can we classify modular data from finite-dimensional reps of $SL_2(\mathbb{Z})$?

- ρ factors through $SL_2(\mathbb{Z}/n\mathbb{Z})$.
- Chinese Reminder Theorem $\to SL_2(\mathbb{Z}/p^k\mathbb{Z})$.
- [Nobs 1976, Nobs and Wolfart 1976] Irreducible representations of $SL_2(\mathbb{Z}/p^k\mathbb{Z})$ are classified using subrepresentations of Weil representations.
- [Ng-Wang-Wilson '23] Every finite-dimensional congruence representation of $SL_2(\mathbb{Z})$ is symmetrizable.
- [Ng-Rowell-Wang-Wen '22] Reconstruction of modular data from irreducible representations of $\mathrm{SL}_2(\mathbb{Z}/n\mathbb{Z})$.
 - Classification up to modular data, rank = 6.

Super-modular categories

Example (sVec)

- Two simple objects: $\mathbf{1}$ and fermion f.
- $\bullet \ S_{\mathrm{sVec}} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad T_{\mathrm{sVec}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- $f \otimes f = 1$, $c_{f,f} = -1$.
- sVec is symmetric since $c_{X,Y}c_{Y,X} = \mathrm{Id}_{Y\otimes X}$ for all X,Y.
- For $\mathcal{D} \subset \mathcal{B}$ BFCs, the Müger centralizer of \mathcal{D} in \mathcal{B} is $C_{\mathcal{B}}(\mathcal{D}) = \{X \in \mathcal{B} : c_{X,Y}c_{Y,X} = \mathrm{Id}_{Y \otimes X}, Y \in \mathcal{D}\}$
- The Müger center $\mathcal{B}' = C_{\mathcal{B}}(\mathcal{B})$.
- If \mathcal{B} is modular, then $\mathcal{B}' \simeq \mathsf{Vec}$.

Definition (Super-modular Category)

Unitary pre-modular category \mathcal{B} is super-modular if $\mathcal{B}' \cong \mathrm{sVec}$.

Super-modular Categories from $U_q(\mathfrak{sl}_2)$

Example

 $PSU(2)_{4m+2}$: subcategory of $SU(2)_{4m+2}$ is super-modular.

•
$$2m+2$$
 simple objects: $\{Y_0=1,Y_1=X_2,\ldots,Y_{2m+1}=X_{4m+2}\}.$

•
$$S_{ij} = \frac{\sin(\frac{(2i+1)(2j+1)\pi}{(4m+4)})}{\sin(\frac{\pi}{(4m+4)})}$$
 and $\theta_j = e^{\frac{\pi i(j^2+j)}{2m+2}}$.

- $Y_1 \otimes Y_k \cong Y_{k-1} \oplus Y_{k+1} \oplus Y_k$ for $k \ll \infty$.
- $PSU(2)'_{4m+2} = \langle Y_{2m+1} \rangle \cong sVec.$

Where do Super-modular Categories Come from?

- split super-modular: $\mathcal{C} \boxtimes \operatorname{sVec}$, where \mathcal{C} is modular.
- Let (C, f) be a spin modular category, where C is modular and $f \in C$ is a fermion.
 - Then $C = C_0 \oplus C_1$, where $C_0 = C_C(\langle f \rangle)$ is super-modular.
 - Also, $\dim(\mathcal{C}_0) = \dim(\mathcal{C})/2$.
- [Johnson-Freyd-Reutter '23] Every super-modular category $\mathcal B$ can be embedded in a modular category $\mathcal C$ of dimension $\dim(\mathcal C)=2\dim(\mathcal B).$

Projective Representation of Γ_{θ}

- $S=\begin{pmatrix}1&1\\1&1\end{pmatrix}\otimes\hat{S}$, $T=\begin{pmatrix}1&0\\0&-1\end{pmatrix}\otimes\hat{T}$, where \hat{S} is symmetric and nondegenerate.
- $\mathrm{SL}_2(\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \rangle$. The assignment $\mathfrak{s} \to \hat{S}$, $\mathfrak{t}^2 \to \hat{T}^2$ gives a projective representation $\hat{\rho}$ of $\Gamma_{\theta} = \langle \mathfrak{s}, \mathfrak{t}^2 \rangle \subset \mathrm{SL}_2(\mathbb{Z})$.

Theorem (Bonderson-Rowell-Wang-Z'19)

For a super-modular category, $\hat{\rho}(\Gamma_{\theta})$ is a finite group, with kernel a congruence subgroup.

Super-modular Categories by Rank

- Rank \leq 6. [BGNPRW '20] $PSU(2)_{4m+2}$ for m=0,1,2 are the only prime super-modular categories up to fusion rules.
- $\begin{array}{l} \bullet \;\; \text{Rank} = 8. \\ \text{[Bruillard-Plavnik-Rowell-Z '21]} \;\; \text{With bounded fusion coefficients} \\ \text{and dimensions, the prime super-modular categories are} \\ \text{PSU}(2)_{14}, \;\; \text{[PSU}(2)_{6} \otimes \text{PSU}(2)_{6}]_{\mathbb{Z}_{2}}, \;\; \text{[SO}(12)_{2}]_{0}. \end{array}$
- Rank = 10. [Cho-Kim-Seo-You '22] Reconstrucion of (\hat{S}, \hat{T}^2) from congruence representations of Γ_{θ} , adapted from classifying modular categories.

Two families of unrealized modular data for super-modular categories.

New (S,T) for Super-modular Categories

[Cho-Kim-Seo-You '22]

Unrealized data for rank 10 super-modular categories

$$\hat{S} = \begin{bmatrix} \frac{1}{4+\sqrt{15}} & \frac{4+\sqrt{15}}{5+\sqrt{15}} & \frac{5+\sqrt{15}}{5+\sqrt{15}} & \frac{3+\sqrt{15}}{-3-\sqrt{15}} & \frac{3+\sqrt{15}}{-3-\sqrt{15}} \\ \frac{4+\sqrt{15}}{5+\sqrt{15}} & \frac{1}{5+\sqrt{15}} & \frac{5+\sqrt{15}}{-5-\sqrt{15}} & 0 & 0 & 0 \\ 3+\sqrt{15} & -3-\sqrt{15} & 0 & \frac{1}{2}(1+\sqrt{5})(3+\sqrt{15}) & -\frac{2\sqrt{30}(4+\sqrt{15})}{5+\sqrt{5}} \\ 3+\sqrt{15} & -3-\sqrt{15} & 0 & -\frac{2\sqrt{30}(4+\sqrt{15})}{5+\sqrt{5}} & \frac{1}{2}(1+\sqrt{5})(3+\sqrt{15}) \end{bmatrix}$$

$$\hat{T}^2 = \text{Diag}\left[1,1,e^{2i\pi/3},e^{4i\pi/5},e^{-4i\pi/5}\right]$$

$$\hat{S} = \begin{bmatrix} 1 & 5 + 2\sqrt{6} & 3 + \sqrt{6} & 3 + \sqrt{6} & 3 + \sqrt{6} & 4 + 2\sqrt{6} \\ 5 + 2\sqrt{6} & 1 & 3 + \sqrt{6} & 3 + \sqrt{6} & 4 + 2\sqrt{6} \\ 3 + \sqrt{6} & 3 + \sqrt{6} & -3 - \sqrt{6} - i\sqrt{6\left(2\sqrt{6} + 5\right)} & -3 - \sqrt{6} + i\sqrt{6\left(2\sqrt{6} + 5\right)} & 0 \\ 3 + \sqrt{6} & 3 + \sqrt{6} & -3 - \sqrt{6} + i\sqrt{6\left(2\sqrt{6} + 5\right)} & -3 - \sqrt{6} - i\sqrt{6\left(2\sqrt{6} + 5\right)} & 0 \\ 4 + 2\sqrt{6} & -4 - 2\sqrt{6} & 0 & 0 & 4 + 2\sqrt{6} \end{bmatrix}$$

$$\hat{T}^2 = \mathrm{Diag}\left[1, 1, -1, -1, e^{2i\pi/3}\right]$$

Near-group Categories

- A near-group category is a fusion category C in which all but one simple object is invertible.
- Simple objects: $G \cup \{\rho\}$
- Fusion rules:
 - $g\rho = \rho g = \rho$ for all $g \in G$,
 - $\rho \otimes \rho = n'\rho + \sum_{g \in G} g$.

$$\bullet \ d_{\rho} = \frac{n' + \sqrt{n'^2 + 4n}}{2}$$

Denote near-group category with the above fusion rules by G + n'.

- [Evans-Gannon '14]
 - Given a near-group category of type G+n', the only possible values for n' are 0, n-1, or $n' \in n\mathbb{Z}$, where n=|G|.
- [Tambara-Yamagami '98] The fusion categories of type G+0 are completely classified.

Near-group Categories of type G + n

• [Izumi '01, Evans-Gannon '14] Near-group categories of type G+n are determined by $(G,a,b,c,\langle\,,\,\rangle)$, where $c\in\mathbb{T},\ a:G\to\mathbb{T},\ b:G\to\mathbb{C}$ and $\langle\,\,,\,\,\rangle$ is a non-degenerate symmetric bicharcter satisfying

$$\begin{split} &a(0)=1, \quad a(x)=a(-x), \quad a(x+y)\langle x,y\rangle = a(x)a(y), \quad \sum_{a\in G}a(x)=\sqrt{n}c^{-3},\\ &b(0)=-\frac{1}{d}, \quad \sum_{y}\overline{\langle x,y\rangle}b(y)=\sqrt{n}c\overline{b(x)}, \quad a(x)b(-x)=\overline{b(x)},\\ &\sum_{x}b(x+y)\overline{b(x)}=\delta_{y,1}-\frac{1}{d}, \quad \sum_{x}b(x+y)b(x+z)\overline{b(x)}=\overline{\langle y,z\rangle}b(y)b(z)-\frac{c}{d\sqrt{n}}. \end{split}$$

Solutions exist for $G = \mathbb{Z}_n, 1 \leq n \leq 13$. $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_6$.

No solutions for $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

- [Schopieray '22] If G is an an elementary abelian 2-group of order n, then the near-group fusion ring R(G+n) is categorifiable if and only if $G=\mathbb{Z}_2$ or $G=\mathbb{Z}_2\times\mathbb{Z}_2$.
- [Budinski '21] Solutions exist for $G = \mathbb{Z}_n, 1 \leqslant n < 29$.

Centers of Near-group Categories of Type G + n

[lzumi '01] Formula for modular data using the tube algebra construction.

• To obtain (S,T), we need to solve the equations for (ξ,τ,ω) , where $\xi:G\to\mathbb{T}$, $\tau\in G$, and $\omega\in\mathbb{T}$ such that

$$\begin{split} \sum_g \xi(g) &= \sqrt{n}\omega^2 a(\tau)c^3 - nd^{-1}, \quad \xi(\tau-g) = \omega c^4 a(g)a(\tau-g)\overline{\xi(g)} \\ &\bar{c} \sum_k b(g+k)\xi(k) = \omega^2 c^3 a(\tau)\overline{\xi(g+\tau)} - \sqrt{n}d^{-1} \\ &\sum_k \xi(k)b(k-g)b(k-h) = c^{-2}b(g+h-\tau)\xi(g)\xi(h)\overline{a(g-h)} - c^2d^{-1} \end{split}$$

• Then T and S matrices are given by

$$S = \frac{1}{\lambda} \left[\begin{array}{ccc} \left\langle g,g'\right\rangle^{-2} & \left(d+1\right)\left\langle g,h'\right\rangle^{-2} & \left(d+2\right)\overline{\left\langle g,k'+l'\right\rangle} & d\left\langle g,\tau_{j'}\right\rangle \\ \left(d+1\right)\left\langle h,g'\right\rangle^{-2} & \left\langle h,h'\right\rangle^{-2} & \left(d+2\right)\overline{\left\langle h,k'+l'\right\rangle} & -d\left\langle h,\tau_{j'}\right\rangle \\ \left(d+2\right)\overline{\left\langle k+l,g'\right\rangle} & \left(d+2\right)\overline{\left\langle k+l,h'\right\rangle} & S_{(k,l),(k',l')} & \mathbf{0} \\ d\left\langle \tau_{j},g'\right\rangle & -d\left\langle \tau_{j},h'\right\rangle & \mathbf{0} & S_{j,j'} \end{array} \right]$$

with 4 classes of simple objects:

- (1) $\mathfrak{a}_g, g \in G$, (2) $\mathfrak{b}_h, h \in G$, (3) $\mathfrak{c}_{l,k} = \mathfrak{c}_{k,l}, l, k \in G, l \neq k$,
- (4) \mathfrak{d}_j , where j corresponds to a triple $(\xi_j, \tau_j, \omega_j)$.

Centers of Near-group Categories of Type G + n

• [Evans-Gannon '14] conjectured the modular data can be obtained by metric groups (G, q_1) and (Γ, q_2) , where

•
$$|\Gamma| = |G| + 4$$
,

$$\bullet \ \, \frac{1}{\sqrt{|G|}} \sum_{g \in G} q_1(g) = -\frac{1}{\sqrt{|\Gamma|}} \sum_{\gamma \in \Gamma} q_2(\gamma) \text{, if } |G| \text{ is odd.}$$

Then the lower right corner for (S,T) can be replaced by

$$\begin{split} t_{(\tau,\gamma),(\tau,\gamma)} &= \langle \tau,\tau \rangle \langle \gamma,\gamma \rangle', \quad (\tau \in G, \gamma \in \Gamma \backslash \{0\}) \\ s_{(\tau,\gamma),(\tau',\gamma')} &= -d \, \overline{\langle \tau,\tau' \rangle} \left(\left\langle \gamma,\gamma' \right\rangle' + \overline{\langle \gamma,\gamma' \rangle'} \right), \quad \left(\tau,\tau' \in G, \gamma,\gamma' \in \Gamma \backslash \{0\} \right) \end{split}$$

- Verified for $n \leq 13$.
- Generalized and further verified in [Grossman-Izumi '20] and [Budinski '21].
- Central charge $\neq 1$ modular data from the conjecture [Bonderson-Rowell-Wang] Realization by zesting and gauging.

Modular Data when $G = \mathbb{Z}/6\mathbb{Z}$

• [Evans-Gannon '14] Up to equivalence, there are 4 near-group categories when $G=\mathbb{Z}/6\mathbb{Z}.$

	m	c	b(1), b(2), b(3)
J_6^1	1	ζ^1_{24}	2.95526, 0.0553542, -0.785398
$\overline{J_6^1}$	-1	ζ_{24}^{-1}	-2.95526, -0.0553542, 0.785398
J_6^2	5	ζ_{24}^5	2.91503, -1.59091, 2.35619
$\overline{J_6^2}$	-5	ζ_{24}^{-5}	-2.91503, 1.59091, -2.35619

$$\sqrt{n}b(x) = \exp(ij(x)), j(x) \in [-\pi, \pi].$$

• There are 27 solutions to the triples (ω, ξ, τ)

	_		
#	ω	τ	ξ
1	6	0	0.837758, -2.16701, 2.73289, 2.40855, 1.03703, 2.79533
2	24	0	-1.36136, 0.0503995, -0.101868, -2.93215, -0.526451, 2.46287
3	36	0	2.40855, 1.03703, 2.79533, 0.837758, -2.16701, 2.73289
4	54	0	-2.93215, -0.526451, 2.46287, -1.36136, 0.0503995, -0.101868
5	55	1	-1.60604, 1.60604, -1.0472, -1.60604, 1.60604, -1.0472
6	31	1	2.42435, 1.34557, 0.428593, -1.39623, -1.11705, 1.24692
7	31	1	-1.39623, -1.11705, 1.24692, 2.42435, 1.34557, 0.428593
8	19	1	-2.51206, -1.25786, -2.13757, -0.499749, 3.01302, 2.55645
9	19	1	-0.499749, 3.01302, 2.55645, -2.51206, -1.25786, -2.13757
10	4	2	-0.101868, -2.93215, -0.526451, 2.46287, -1.36136, 0.0503995
11	16	2	2.79533, 0.837758, -2.16701, 2.73289, 2.40855, 1.03703
12	34	2	2.46287, -1.36136, 0.0503995, -0.101868, -2.93215, -0.526451
13	46	2	2.73289, 2.40855, 1.03703, 2.79533, 0.837758, -2.16701
14	15	3	-1.0472, -1.60604, 1.60604, -1.0472, -1.60604, 1.60604
15	39	3	2.55645, -2.51206, -1.25786, -2.13757, -0.499749, 3.01302
16	39	3	-2.13757, -0.499749, 3.01302, 2.55645, -2.51206, -1.25786
17	51	3	1.24692, 2.42435, 1.34557, 0.428593, -1.39623, -1.11705
18	51	3	0.428593, -1.39623, -1.11705, 1.24692, 2.42435, 1.34557
19	4	4	-0.526451, 2.46287, -1.36136, 0.0503995, -0.101868, -2.93215
20	16	4	-2.16701, 2.73289, 2.40855, 1.03703, 2.79533, 0.837758
21	34	4	0.0503995, -0.101868, -2.93215, -0.526451, 2.46287, -1.36136
22	46	4	1.03703, 2.79533, 0.837758, -2.16701, 2.73289, 2.40855
23	55	5	1.60604, -1.0472, -1.60604, 1.60604, -1.0472, -1.60604
24	19	5	3.01302, 2.55645, -2.51206, -1.25786, -2.13757, -0.499749
25	19	5	-1.25786, -2.13757, -0.499749, 3.01302, 2.55645, -2.51206
26	31	5	1.34557, 0.428593, -1.39623, -1.11705, 1.24692, 2.42435
27	31	5	-1.11705, 1.24692, 2.42435, 1.34557, 0.428593, -1.39623
			Table 2. $(\omega_i, \tau_i, \xi_i)$ for J_k^i in Table 1

Modular Data when $G = \mathbb{Z}/6\mathbb{Z}$

- ullet The center ${\cal C}$ has rank 54 with the following simple objects:
 - 6 invertible objects
 - 6 with dimension $4 + \sqrt{15}$
 - 15 with dimension $5 + \sqrt{15}$
 - 27 with dimension $3 + \sqrt{15}$
- $\bullet \ S$ and T for its pointed subcategory:

$$S_{\rm pt} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-\frac{2i\pi}{3}} & e^{\frac{2i\pi}{3}} & 1 & e^{-\frac{2i\pi}{3}} & e^{\frac{2i\pi}{3}} \\ 1 & e^{\frac{2i\pi}{3}} & e^{-\frac{2i\pi}{3}} & 1 & e^{\frac{2i\pi}{3}} & e^{-\frac{2i\pi}{3}} \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-\frac{2i\pi}{3}} & e^{\frac{2i\pi}{3}} & 1 & e^{-\frac{2i\pi}{3}} & e^{\frac{2i\pi}{3}} \\ 1 & e^{\frac{2i\pi}{3}} & e^{-\frac{2i\pi}{3}} & 1 & e^{\frac{2i\pi}{3}} & e^{-\frac{2i\pi}{3}} \end{bmatrix},$$

$$T_{\rm pt} = {\rm diag}\left[1, e^{\frac{i\pi}{3}}, e^{-\frac{2i\pi}{3}}, -1, e^{-\frac{2i\pi}{3}}, e^{\frac{i\pi}{3}}\right].$$

- \bullet $\mathcal C$ contains a fermion f.
- ullet C has a pointed modular subcategory $\mathcal{C}(\mathbb{Z}/3\mathbb{Z},q).$

 $\mathcal{C}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/3\mathbb{Z},q)$, where \mathcal{D} is a spin modular category.

Realizing the 1st Modular Data

• The 1st family of modular data can be obtained from the center of near-group categories of type $\mathbb{Z}/6\mathbb{Z}+6$.

Theorem (Rowell-Solomon-Z)

Let $\mathcal C$ be the Drinfeld center of a near-group category of type $\mathbb Z/6+6$, then $\mathcal C\cong\mathcal D\boxtimes\mathcal C(\mathbb Z/3,q)$, where $\mathcal D$ is a spin modular category. Moreover, the Müger centralizer of $\langle f\rangle$ in $\mathcal D$ is super-modular and has the following family of modular data

$$\hat{S} = \begin{bmatrix} 1 & 4+\sqrt{15} & 5+\sqrt{15} & 3+\sqrt{15} & 3+\sqrt{15} \\ 4+\sqrt{15} & 1 & 5+\sqrt{15} & -3-\sqrt{15} & -3-\sqrt{15} \\ 5+\sqrt{15} & 5+\sqrt{15} & -5-\sqrt{15} & 0 \\ 3+\sqrt{15} & -3-\sqrt{15} & 0 & \frac{1}{2}(1+\sqrt{5})(3+\sqrt{15}) & -\frac{2\sqrt{30}(4+\sqrt{15})}{5+\sqrt{5}} \\ 3+\sqrt{15} & -3-\sqrt{15} & 0 & -\frac{2\sqrt{30}(4+\sqrt{15})}{5+\sqrt{5}} & \frac{1}{2}(1+\sqrt{5})(3+\sqrt{15}) \end{bmatrix}$$

$$\hat{T}^2 = \text{Diag}\left[1, 1, e^{2i\pi/3}, e^{4i\pi/5}, e^{-4i\pi/5}\right]$$

Modular Data when $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$

• [Evans-Gannon '14]

There are 4 near-group categories when $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

		_		, ,
	c	(,)	a	b(0,1), b(0,2), b(1,0), b(1,1), b(1,2)
$J^{1}_{(2,4)}$	ζ_{12}^{5}	1	(1, 1)	-0.992441, 1.5708, 0.785398, -1.42977, -0.785398
$J_{(2,4)}^2$	ζ_{12}^{-5}	-1	(-1, 1)	0.992441, -1.5708, -0.785398, 1.42977, 0.785398
$J_{(2,4)}^3$	ζ_{12}^{-5}	1	(1, -1)	1.42977, -1.5708, 0.785398, -1.77784, -0.785398
$J_{(2,4)}^{4}$	ζ_{12}^{5}	-1	(-1, -1)	-1.42977, 1.5708, -0.785398, 1.77784, 0.785398

• There are 44 solutions to the triples (ω, ξ, τ) .

#	ω	т	ξ
1	16	(0,0)	0, 0.4373, 0, -2.008, -1.571, 3.076, 1.571, -1.505
2	16	(0.0)	0, -2.008, 0, 0, 4373, 1, 571, -1, 505, -1, 571, 3, 076
3	40	(0,0)	1.571, -1.505, -1.571, 3.076, 0, -2.008, 0, 0.4373
4	40	(0,0)	-1.571, 3.076, 1.571, -1.505, 0, 0.4373, 0, -2.008
5	21	(0,1)	-1.134, 1.003, -0.0339, 3.045, -0.0339, 3.045, -1.134, 1.003
6	45	(0,1)	-0.0339, 3.045, -1.134, 1.003, -1.134, 1.003, -0.0339, 3.045
7	13	(0,1)	0.2202, -1.398, -1.675, -2.644, -2.842, -1.477, 2.793, 2.312
8	13	(0,1)	2.793, 2.312, -2.842, -1.477, -1.675, -2.644, 0.2202, -1.398
9	37	(0,1)	-1.675, -2.644 , 0.2202 , -1.398 , 2.793 , 2.312 , -2.842 , -1.477
10	37	(0,1)	-2.842, -1.477, 2.793, 2.312, 0.2202, -1.398, -1.675, -2.644
11	4	(0,2)	3.076, 1.571, -1.505, -1.571, 0.4373, 0, -2.008, 0
12	4	(0, 2)	-1.505, -1.571, 3.076, 1.571, -2.008, 0, 0.4373, 0
13	28	(0, 2)	0.4373, 0, -2.008, 0, 3.076, 1.571, -1.505, -1.571
14	28	(0, 2)	-2.008, 0, 0.4373, 0, -1.505, -1.571, 3.076, 1.571
15	21	(0,3)	1.003, -0.0339, 3.045, -1.134, 3.045, -1.134, 1.003, -0.0339
16	45	(0,3)	3.045, -1.134, 1.003, -0.0339, 1.003, -0.0339, 3.045, -1.134
17	13	(0,3)	2.312, -2.842, -1.477, 2.793, -2.644, 0.2202, -1.398, -1.675
18	13	(0,3)	-1.398, -1.675, -2.644, 0.2202, -1.477, 2.793, 2.312, -2.842
19	37	(0,3)	-2.644, 0.2202, -1.398, -1.675, 2.312, -2.842, -1.477, 2.793
20	37	(0,3)	-1.477, 2.793, 2.312, -2.842, -1.398, -1.675, -2.644, 0.2202
21	22	(1,0)	-2.241, -1.335, -0.835, 0.8973, 1.455, 3.03, 0.04963, -1.022
22	22	(1,0)	-0.835, 0.8973, -2.241, -1.335, 0.04963, -1.022, 1.455, 3.030
23	22	(1,0)	0.04963, -1.022, 1.455, 3.03, -0.835, 0.8973, -2.241, -1.335
24	22	(1,0)	1.455, 3.03, 0.04963, -1.022, -2.241, -1.335, -0.835, 0.8973
25	6	(1,0)	2.235, 2.673, 2.235, 2.673, 1.168, -0.8402, 1.168, -0.8402
26	6	(1,0)	1.168, -0.8402, 1.168, -0.8402, 2.235, 2.673, 2.235, 2.673
27	15	(1,1)	0.6315, -3.119, 2.979, -2.324, 0.6315, -3.119, 2.979, -2.324
28	39	(1,1)	2.979, -2.324, 0.6315, -3.119, 2.979, -2.324, 0.6315, -3.119
29	7	(1,1)	2.65, 1.091, 2.736, -0.06957, 1.658, 0.09927, -0.3231, -3.129
30	7	(1,1)	1.658, 0.09927, -0.3231, -3.129, 2.65, 1.091, 2.736, -0.06957
31	31	(1,1)	2.736, -0.06957, 2.65, 1.091, -0.3231, -3.129, 1.658, 0.09927
32	31	(1,1)	-0.3231, -3.129, 1.658, 0.09927, 2.736, -0.06957, 2.65, 1.091
33	34	(1,2)	-1.022, 1.455, 3.03, 0.04963, 0.8973, -2.241, -1.335, -0.835
34	34	(1,2)	0.8973, -2.241, -1.335, -0.835, -1.022, 1.455, 3.03, 0.04963
35	34	(1,2)	3.03, 0.04963, -1.022, 1.455, -1.335, -0.835, 0.8973, -2.241
36	34	(1,2)	-1.335, -0.835, 0.8973, -2.241, 3.03, 0.04963, -1.022, 1.455
37	18	(1, 2)	2.673, 2.235, 2.673, 2.235, -0.8402, 1.168, -0.8402, 1.168
	18	(1,2)	-0.8402, 1.168, -0.8402, 1.168, 2.673, 2.235, 2.673, 2.235 -3.119, 2.979, -2.324, 0.6315, -3.119, 2.979, -2.324, 0.6315
39		(1.3)	

Modular Data when $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$

- ullet The center ${\cal C}$ has rank 88 with the following simple objects:
 - 8 invertible objects
 - 8 with dimension $5 + 2\sqrt{6}$
 - 28 with dimension $2(3+2\sqrt{6})$
 - 44 with dimension $4 + 2\sqrt{6}$
- S and T for its pointed subcategory:

$$S_{\mathrm{pt}} = \begin{bmatrix} \frac{1}{1} & \frac{1}{-1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{-1} & \frac{1}{1} & \frac{1}{-1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & -1 & \frac{1}{1} & -1 & \frac{1}{1} & -1 & \frac{1}{1} & -1 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & -1 & \frac{1}{1} & -1 & \frac{1}{1} & -1 & \frac{1}{1} & -1 \\ \frac{1}{1} & -1 & \frac{1}{1} & -1 & \frac{1}{1} & -1 & \frac{1}{1} & -1 \end{bmatrix}}.$$

$$T_{\mathrm{pt}} = \mathrm{diag}\left[1, i, 1, i, -1, -i, -1, -i, -1\right].$$

- Boson: self-dual invertible object with twist $\theta_b = 1$.
- ullet C has two fermions and one boson b.

Boson Condensation

- Let $\mathcal C$ be modular and $\operatorname{Rep}(G) \cong \mathcal D \subset \mathcal C$ a Tannakian subcategory.
- ullet The G-de-equivariantization \mathcal{C}_G of \mathcal{C} is a braided G-crossed category.
- ullet Trivial component $[\mathcal{C}_G]_e$ is modular, $\dim([\mathcal{C}_G]_e) = \dim(\mathcal{C})/|G|^2$
- ullet $[\mathcal{C}_G]_e$ is the boson condensation of \mathcal{C} , $[\mathcal{C}_G]_e=(C_{\mathcal{C}}(\mathcal{D}))_G$

If $\operatorname{Rep}\left(\mathbb{Z}_2\right)\cong\langle b\rangle\subset\mathcal{C}$, let F be the $\mathbb{Z}/2$ -de-equivariantization functor.

Restricting to the centralizer of $\langle b \rangle$,

- if $b \otimes X \cong Y \neq X$, then $F(X) \cong F(Y)$ is simple with same dimension.
- if $b \otimes X \cong X$, then $F(X) \cong X_1 \oplus X_2$, X_i simple with $\dim(X)/2$.
- $\bullet \ \theta_{F(X)} = \theta_X.$

From the Center to Super-modular

Let $\mathcal C$ be the Drinfeld center of a near-group category of type $\mathbb Z/2\mathbb Z\times\mathbb Z/4\mathbb Z+8.$

- ullet Condense the boson b to obtain modular category $[\mathcal{C}_{\mathbb{Z}/2\mathbb{Z}}]_0.$
 - rank = 36.
 - dimensions are 1, $5 + 2\sqrt{6}$, $2(3 + \sqrt{6})$, $3 + \sqrt{6}$, $4 + 2\sqrt{6}$, $2 + \sqrt{6}$.
 - ullet $\left[\mathcal{C}_{\mathbb{Z}/2\mathbb{Z}}
 ight]_0$ contains semion objects (self-dual invertible with twist $\pm i$).
- ullet $[\mathcal{C}_{\mathbb{Z}/2\mathbb{Z}}]_0\cong\mathcal{D}oxtimes\mathcal{C}(\mathbb{Z}/2\mathbb{Z},q)$, where \mathcal{D} is a spin modular category.
- $\mathcal{D} \cong \mathcal{D}_0 \oplus \mathcal{D}_1$, $\mathcal{D}_0 = C_{\mathcal{C}}(\langle f \rangle)$.
- ullet \mathcal{D}_0 is a super-modular category.

Realizing the 2nd Class of Modular Data

 The 2nd class of modular data can be obtained from the center of near-group categories of type \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} + 8. \)

Theorem (Rowell-Solomon-Z)

Let $\mathcal C$ be the Drinfeld center of a near-group category of type $\mathbb Z/2\mathbb Z \times \mathbb Z/4\mathbb Z + 8$. Then $[\mathcal C_{\mathbb Z/2\mathbb Z}]_0 \cong \mathcal D \boxtimes \mathcal C(\mathbb Z/2\mathbb Z,q)$, where $\mathcal D$ is a spin modular and q is the associated quadratic form restrict to $\mathbb Z/2\mathbb Z$. The Müger centralizer of $\langle f \rangle$ in $\mathcal D$ has the following family of modular data

$$\hat{S} = \begin{bmatrix} 1 & 5 + 2\sqrt{6} & 3 + \sqrt{6} & 3 + \sqrt{6} & 3 + \sqrt{6} & 4 + 2\sqrt{6} \\ 5 + 2\sqrt{6} & 1 & 3 + \sqrt{6} & 3 + \sqrt{6} & 3 + \sqrt{6} & -4 - 2\sqrt{6} \\ 3 + \sqrt{6} & 3 + \sqrt{6} & -3 - \sqrt{6} - i\sqrt{6}\left(2\sqrt{6} + 5\right) & -3 - \sqrt{6} + i\sqrt{6}\left(2\sqrt{6} + 5\right) & 0 \\ 3 + \sqrt{6} & 3 + \sqrt{6} & -3 - \sqrt{6} + i\sqrt{6}\left(2\sqrt{6} + 5\right) & -\sqrt{6} - i\sqrt{6}\left(2\sqrt{6} + 5\right) - 3 & 0 \\ 4 + 2\sqrt{6} & -4 - 2\sqrt{6} & 0 & 0 & 4 + 2\sqrt{6} \end{bmatrix}$$

$$\hat{T}^2 = \text{Diag}\left[1, 1, -1, -1, e^{2i\pi/3}\right]$$

Other Examples from Near-group Centers

Type of ${\mathcal F}$	Conj. form of $\mathcal{Z}(\mathcal{F})$	Notes
$\mathbb{Z}/1+1$	Fib⊠Fib ^{rev}	$\mathcal{F} = \mathrm{Fib}$
$\mathbb{Z}/2+2$	$SU(2)_{10}$	[BRW]
$\mathbb{Z}/3+3$	$G(2)_3 \boxtimes \mathcal{C}(\mathbb{Z}/3, Q)$	$rank(G(2)_3) = 6 [NRWW]$
$\mathbb{Z}/2 \times \mathbb{Z}/2 + 4$	$\left(\left[\left[\operatorname{SU}(2)_6^{\boxtimes 2}\right]_{\mathbb{Z}/2}\right]_0\right)_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2}$	[BPRZ]
$\mathbb{Z}/4+4$	$[\mathrm{PSU}(3)_5 \boxtimes \mathcal{C}(\mathbb{Z}/2, Q)]_{\mathbb{Z}/2}^{\times, \mathbb{Z}/2}$	$rank(PSU(3)_5) = 7$
$\mathbb{Z}/5+5$	$\mathcal{B} \boxtimes \mathcal{C}(\mathbb{Z}/5, Q)$	$rank(\mathcal{B}) = 8$
$\mathbb{Z}/6+6$	$\mathcal{D} \boxtimes \mathcal{C}(\mathbb{Z}/3, Q)$	${\cal D}$ in Theorem 1 [RSZ]
$\mathbb{Z}/7+7$	$\mathcal{B} \boxtimes \mathcal{C}(\mathbb{Z}/7, Q)$	$rank(\mathcal{B}) = 10$
$\mathbb{Z}/8+8$	$[G(2)_4 \boxtimes \mathcal{C}(\mathbb{Z}/4, Q)]_{\mathbb{Z}/2}^{\times, \mathbb{Z}/2}$	$\operatorname{rank}(G(2)_4) = 9$
$\mathbb{Z}/2 \times \mathbb{Z}/4 + 8$	$\left[\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/2,Q)\right]_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2}$	\mathcal{D} in Theorem 2 [RSZ]

 ${\bf Table:} \ {\bf Familiar} \ {\bf categories} \ {\bf conjecturally} \ {\bf related} \ {\bf to} \ {\bf centers} \ {\bf of} \ \, G+n \ {\bf near-group} \ \, {\bf categories}.$

Thank you!