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Motivation
Modular category with modular data (S, 7).
e (5,T) gives a projective representation p of SLo(Z).

@ [Ng-Schauenburg '10] If N = ord(T), p factors through
SLy(Z/NZ).

o [Ng-Rowell-Wang-Wen '22] Reconstruction of modular data from
irreducible representations of SLy(Z/nZ).

Super-modular category with (S, 7).
° (S,TQ) gives a projective representation p of T'yg < SLy(Z).

e [Bonderson-Rowell-Wang-Z'19] 5 (I'y) is a finite group assuming
minimal modular extension.

@ [Cho-Kim-Seo-You '22] Unrealized (S, T") for super-modular
categories.



Modular Tensor Categories

@ A pre-modular category C over C is
monoidal: (®,1),
semisimple: X = @®;m;X;,
linear: Hom(X,Y') € Vecc,
rigid: X* @ X —1— X ® X*,
finite rank: finitely many simple objects X;; 1 is simple,
braided: fxy : X ®Y =Y ® X,
spherical: j : ide = (—)**.

Plus compatibility conditions.



Modular Tensor Categories

@ A premodular category C over C is a spherical braided fusion
category.

o Txy :=0x,v0x,X,Y € Irr(C).

Ribbon structure ¢ : id¢ — idc.
If X € Irr(C), then Ox is a nonzero scalar multiple of idx.

e Sxy :=tr (,By,x* oBx+y),X,Y € Irr(C).
@ C is modular if S is invertible.

@ The pair of matrices (S,T') is called the modular data of C.

@ Dimensions: dx := S1,x, dim(C Zdz

o Fusion rule: X @ Y = &N¥%, Z.

Fusion coefficients: N¥ - = dim Hom(X ® Y, Z).



Examples of Modular Tensor Categories

@ Pointed: C(A,Q), abelian group A, non-deg. quadratic form @ on
A.

@ From quantum groups:

—e7i/! /(Ann(Tr))
g~ Ugg " Rep(Ugg) "~ " C(g,1)

@ The Drinfeld center Z(C) of a spherical fusion category C.

Objects of Z(C) are (Z,), where Z is an object of C and ~ is half
braiding.



SLo(Z) Representation

Given a modular category with (unnormalized) modular data (S, T).

o S*=dim(C)?1d, (ST)* = p* S?, where p* = 3. 6Fd?.

0 —1 11
SLy(Z) = (s,t), where s = (1 O) and t = (0 1).

o 5* =1d, (st)% =52

e s— S, t— T gives a projective representation p¢ of SLa(Z).

@ H < SLy(Z) is called a congruence subgroup if H contains some
I'(n) :={A€SL(2,Z): A=1 (mod n)}.

SL2(Z)/T'(n) = SLo(Z/nZ) for all n > 1.

[Ng-Schauenburg '10]

If N =ord(T),
e pc factors through SL2(Z/NZ).

e Q(S) c Q(¢n), N =ord(T).



SLy(Z) Representation (continued)

1 1
@ s:=———-S5 and t:= =T, where y is any third root of the
dim(C) Y

multiplicative central charge £ = p*(C)/{/dim(C).
@ 5+ s, t+— t gives a linear representation p of SLy(Z).
e [Dong-Lin-Ng '15]

If n = ord(t),

e p factors through SL2(Z/nZ)
e im(p) C GL-(Q(¢n))



Modular Data from SLy(Z) Representations

Can we classify modular data from finite-dimensional reps of SLs(Z)?
e p factors through SLy(Z/nZ).
e Chinese Reminder Theorem — SLy(Z/p*7Z).

@ [Nobs 1976, Nobs and Wolfart 1976] Irreducible representations of
SLo(Z/p*Z) are classified using subrepresentations of Weil
representations.

o [Ng-Wang-Wilson '23] Every finite-dimensional congruence
representation of SLa(Z) is symmetrizable.

o [Ng-Rowell-Wang-Wen '22] Reconstruction of modular data from
irreducible representations of SLy(Z/nZ).

Classification up to modular data, rank = 6.



Super-modular categories

Example (sVec)

@ Two simple objects: 1 and fermion f.

1 1 1 0
SsVec - (1 1) TsVec - (0 1)

f®f =1, Cff= —1.
sVec is symmetric since cx ycy,x = Idygx for all X,Y.

@ For D C B BFCs, the Miiger centralizer of D in B is
CB(D) = {X €B: CXYCy,X = IdY®X,Y S D}

The Miiger center B’ = Cg(B).

e If B is modular, then B’ ~ Vec.

Definition (Super-modular Category)

Unitary pre-modular category B is super-modular if B’ = sVec.



Super-modular Categories from U,(sls)

Example
PSU(2)4m+2: subcategory of SU(2) 442 is super-modular.

e 2m+ 2 simple objects: {YO = ].,Yl = )(27 PN ,Y2m+1 = X4m+2}.

. (2i41) (254 D)7
° S = S s ) and 0, = ¢ “Hhr
N sin gry ) !

("] H@Yk%Yk_l@YkH@Yk fOI’k'<<OO.

o PSU(2)4n42 = (Yamq1) = sVec.



Where do Super-modular Categories Come
from?

@ split super-modular: C K sVec, where C is modular.

e Let (C, f) be a spin modular category, where C is modular and
f €C is a fermion.

e Then C = Co & C1, where Co = Ce((f)) is super-modular.

e Also, dim(Co) = dim(C)/2.

@ [Johnson-Freyd-Reutter '23] Every super-modular category B can be
embedded in a modular category C of dimension
dim(C) = 2dim(B).



Projective Representation of I'y

11 -1
nondegenerate.

o S = (1 1) ®S,T= ((1) 0 ) @ T, where S is symmetric and

@ SLy(Z) = (s,t). The assignment s — S, £ — T2 gives a projective
representation p of 'y = (s, t2) C SLo(Z).

Theorem (Bonderson-Rowell-Wang-7’19)

For a super-modular category, p(Ty) is a finite group, with kernel a
congruence subgroup.



Super-modular Categories by Rank

@ Rank <6.
[BGNPRW "20] PSU(2) 442 for m = 0,1, 2 are the only prime
super-modular categories up to fusion rules.

e Rank = 8.
[Bruillard-Plavnik-Rowell-Z '21] With bounded fusion coefficients
and dimensions, the prime super-modular categories are
PSU(2)14, [PSU(2)s ® PSU(2)],,. [SO(12)2]o.

e Rank = 10. o
[Cho-Kim-Seo-You '22] Reconstrucion of (S,7?) from congruence
representations of I'y, adapted from classifying modular categories.

Two families of unrealized modular data for super-modular
categories.



New (S,T) for Super-modular Categories
[Cho-Kim-Seo-You '22]

Unrealized data for rank 10 super-modular categories

1 4+ V15 5+ V15 3+ V15 3+ V15
4+ V15 1 5+ V15 -3 — V15 -3 — V15
N 54+ V15 5+ V15 —5 — /15 0 0
S=|s4vis -3-vis 0 L1+ v5)(3 + vIB) 772@&}@)
o
3+v15 —3— 15 0 727%:}‘/?5) 1+ VB3 + VIB)

2 _ Diag [17 1, e2m/37 e4i7r/57 e—4m/5]

1 5+ 26 3+ V6 3+ V6 4+ 26
5+ 2V6 1 3+ V6 34+ V6 —4—2V6

31: 346 346 —3—\/5—%/5(2\/54»5) 3 V6+i 5(2\/6+5) 0
346 3+ 6 —3—\/5+i,/6<2\/5+5) —3—\/5—1‘,/6(2\/54»5) 0

4+2vV6  —4-—2V6 0 0 4+ 2V6

72 = Diag [1, 1,-1, —1,62"”/3}



Near-group Categories

@ A near-group category is a fusion category C in which all but one
simple object is invertible.

e Simple objects: G U {p}

@ Fusion rules:
e gp=pg=ypforall geq,
o p@p=np+3 cc9

n +vn'?2 +4n
°ed,= ——7——
2
Denote near-group category with the above fusion rules by G + n'.
@ [Evans-Gannon '14]
Given a near-group category of type G + n/, the only possible values
for n' are 0,n — 1, or n’ € nZ, where n = |G].

@ [Tambara-Yamagami '98] The fusion categories of type G + 0 are
completely classified.



Near-group Categories of type G +n

@ [lzumi '01, Evans-Gannon '14] Near-group categories of type G + n are
determined by (G,a,b,¢,(,)), wherec€ T, a:G— T, b: G — C and
(', ) is a non-degenerate symmetric bicharcter satisfying

a(0) =1, a(@) =a(-2), a(z+y)(z,y) =al@)aly), > a(@)=ne >,

acG

1 _
b(0) = 7 > (@ w)b(y) = Vach(a), a(z)b(—=z) = b(a),
Y

PIUCEUOEEIE é 2 b+ (e + 25 = T b)) — ﬁ

Solutions exist for G = Z,,1 < n < 13.
ZQ XZQ, ZQXZ4, ZgXZg,ZQXZG .

No solutions for Zo X Zo X Zs.

@ [Schopieray '22] If G is an an elementary abelian 2-group of order n, then
the near-group fusion ring R(G + n) is categorifiable if and only if G = Z»
or G = ZQ X ZQ.

@ [Budinski '21] Solutions exist for G = Zy,1 < n < 29.



Centers of Near-group Categories of Type G +n

[lzumi '01] Formula for modular data using the tube algebra construction.

@ To obtain (S, T), we need to solve the equations for (£, 7,w), where
£:G—T, e, and w € T such that

S e(e) = vawla(r)e® —ndT, g(r — 9) = wela(g)alr — 9)E(9)
g
e blg + k)E(R) = w2cPa(r)E(g + 7) — Vmd !
k

ST E(R)b(k — )b(k — h) = ¢~ 2b(g + h — 7)E(9)E(R)alg — h) — c2d !
k

@ Then T and S matrices are given by

T = diag [<g, gy, (h, h), (k, 1Y, wj}

(s.9')72 @+1{g.ny" 2 @+, +V)  d{s. ;)
gt (d+1)<h,g/>72 <h,h/>72 (d+ 2)(h, k" + U7y —d<h,7-j,>
A @+ Ly d+2)(k+ LR S (1o, 1), (k1) o

a(rja) —d (75, h’) o 55,4

with 4 classes of simple objects:
(1) ag,9€ G, (2)bp,heG, (3)ar=cki,l,keGIl#k,
(4) 95, where j corresponds to a triple (§;,7;,w;).



Centers of Near-group Categories of Type G +n

@ [Evans-Gannon '14] conjectured the modular data can be obtained by
metric groups (G, q1) and (T, g2), where

o [I| =G| +4,

. if |G| is odd.

\/@qu = ﬁzqz’

geqG ~yerl

Then the lower right corner for (S,T") can be replaced by
L), (ry) = (r, )7, 7>,7 (r€G,yeT\{0})
S(T,"/),(T/,"//> =—d <7_7 7_,> (<7, ’Y/>, + <’Y7’Y’>/) ) (7-7 7_/ S G:’Y:’Yl € F\{O})

o Verified for n < 13.

@ Generalized and further verified in [Grossman-lzumi '20] and [Budinski
21].

@ Central charge # 1 modular data from the conjecture
[Bonderson-Rowell-Wang] Realization by zesting and gauging.



Modular Data when G = Z/6Z

@ [Evans-Gannon '14] Up to equivalence, there are 4 near-group categories
when G = Z/6Z.

m c b(1),b(2),b(3)

Ji | 113, 2.95526, 0.0553542, —0.785398
JE | =1 | ¢t | —2.95526,—0.0553542, 0.785398
J 5 &, 2.91503, —1.59091, 2.35619
J2 | -5 | ¢ | —2.91503, 1.59091, —2.35619

Vnb(z) = exp(ij(z)), j(z) € [-m, 7.

@ There are 27 solutions to the triples (w, &, T)

£
0837758, ~2.16701, 2.73280, 2. .u\ass 103703,
1.36136,0.0503005, - 0.101868,
2.40855, 103703, 2.79533, 0.837758, 72 16701, 2.73289
203215, - 0.526151, 2.46287, - 1.30136,0.0503995, - 0101568
=1.60601, 160604, —1.0472, —1.60604, 1.60604, —1.0472

9,3.01302,
1.25786, - 2.13757

2.51206,
26451, 2.46287, —1.36136, 0.0503995

—0.101868, ~2.93215,

116 (2 279533,083 2.16701, 273289, 240855, 103703
12 342 | 2.4
4 2.73289,2.10855, 108703, 270583, 0837
15 T.0472, 160604, 1.60604, —1.0472,
1539 | 3 | 2.53645, —2.51206, —1.25786, —2.
1639
17 51
18 51

136136

1.03703,2.79533, 0.837758, —2.16701, 2.73280, 2 40&....

2355 |5 | 160604, 10472, ~1.60604, 1.60604, —1.0472, 160601
24195 | 3.01302,2.55645, —2.51206, —1.25786, —2.13757, ~0.499749
25 19 1.257T80, - 213757, - 0.499749, 3.01302, 2.55645, - 251206

26 315 | 1.34557,0.428593, — —1.11705, 1.24692,2.42435
27 31]5 | 1117051 12435, 1.31557,0.428593, - 1.39623
TABLE 2. (w;,7;,€;) for J§ in Table[]




Modular Data when G = Z/6Z

@ The center C has rank 54 with the following simple objects:

6 invertible objects

6 with dimension 4 + /15
15 with dimension 5 + /15
27 with dimension 3 + /15

@ S and T for its pointed subcategory:

1 1 1 1 1 1

_ 2im 2im _ 2im 2im

1 e 3 e 3 1 e 3 e 3
2im _ 2im 2im _ 2im

g 1 e3 e 3 1 €3 e '3

pt 1 1 1 1 1 1 '

_2im 24T _2im 24T

1 e 3 e 3 1 e 3 e 3
2im _ 2im 2im _ 2im

1 e3 e 3 1 €3 e '3

_2 i

Tyt = diag l,e%(,e 5 ,—1l,e” S e%ﬂ}.
@ C contains a fermion f.
@ C has a pointed modular subcategory C(Z/3Z,q).

C>2DXC(Z/3Z,q), where D is a spin modular category.



Realizing the 1st Modular Data

@ The 1st family of modular data can be obtained from the center of
near-group categories of type Z/6Z + 6.

Theorem (Rowell-Solomon-Z)

Let C be the Drinfeld center of a near-group category of type Z./6 + 6,
then C =2 DX C(Z/3,q), where D is a spin modular category. Moreover,
the Miiger centralizer of (f) in D is super-modular and has the following
family of modular data

1 4+ V15 5+ V15 3+ V15 3+ V15
4+ V15 1 5+ V15 -3 — V15 -3 — V15
~ 5+ V15 54+ V15 -5 — V15 0 0
S=|s4vis —3-vis 0 La+ VBB + vIB) —72@(;‘\})‘/@
s4VIE —a-VvIE o e L R IR

TQ — Dlag 1’ 1’ 621;71'/3’ 642'71'/578741'7(/5



Modular Data when G = Z /27 x Z/4Z

[Evans-Gannon '14]

There are 4 near-group categories when G = Z /27 x Z/4Z.

c (D) a (0, 1), b(0, 2), b(1, 0), b(L, 1), b(1, 2)
(2,4) 3 1 (1, 1) —0.992441, 1.5708, 0.785398, —1.42977, —0.785398
7(22 19 Oy (-1, 1) 0.992441, —1.5708, —0.785398, 1.42977, 0.785398
(2 2 I3 1 (1, —1) 1.42977, —1.5708, 0.785398, —1.77784, —0.785398
(2 4 3 (=1, —1) —1.42977,1.5708, —0.785398, 1.77784, 0.785398

@ There are 44 solutions to the triples (w,&, 7).

#lw[ 7 €

116 0.0) 0,0.4373,0, 2.008, - 1.571,3.076, 1571, - 1.505

2 |16 (0,0) 0,-2.008,0,0.4373, 1571, 1503, —1.571, 3.076

3 |40 (0,0) 1571, 1,505, - 1571,3.076,0, - 2.008,0,0.4373

4 40| (0,0) LTI, B076, 1571, L505,0,04975, 0, 2008

5[ 20[(0.1) | 154 1003,

6 |45 (0,1)

7 13| (0.)

8 |13 (0,) —2.644,0.2202,~1.398
9 |37 (0.1) 2.312, 2,842, ~1.477
10| 37| (0,1 644
a2 3076, 1571, ~1.505, ~1.571,0.4373,0, —2.008,0

12| 4|02 1505, 1571, 3.076, 1.571, - 2.008,0,0.4373,0

13] 28 (0,2 0.4373,0,-2.008,0,3.076, 1.571, — 1.505, —1.571
14|28 (0,2 it 1571,3.076, 1,571
(21| (0,3 5, ~1.134, 1,003, —0.0339
16 45| (0,3 0.0339, 1.003, —0.0339,3.045, ~1.134
17|13 | (0,3 ATT,2.793, 2,644, 0.2202, ~1.398, 1675
1813 | (0.3) | —1308, 1675, ~2.644,02202, ~1477,2.793, 2312, ~2.842
19| 37| (0,3 2,312, 2,842, ~1.477,2.793
20| 57 | (0,3) | —1477.2.798,5.312, 3,842, 1398, 1675, -2.64,02202
21| 22 [ (1,0) | ~2.241, - 1335, ~0.835,0.8973, 1.455,3.03,0.04963, - 1.022
2222 | (1,0) | ~0.835,0.8973, ~2.211,~1.335,0.04963, ~1.022, 1.455,3.030
23| 22 [ (1,0) | 0.04963, 1.022,1.455,3.03, ~0.835,0.8073, -2.241, - 1.335
24|22 (1,0) | 1455,3.03,0.04963, —1.022, ~2.241, ~1.335, ~0.835, 0.8073
25| 6 [(L,0)] 2.235,2.673,2.235,2.673, 1168, ~0.8402, 1.168, ~0.8402
26| 6 | (1,0)| 1168, 0.8402,1.168, ~0.8402,2.235,2.673, 2.235,2.673
2715 (L1 5,-3.119,2.079, ~2.321
28 |39 [ (1,1) 9, ~2.324,0.6315, ~3.119
297 [(1,1) 0.09927, ~0.3231, ~3.129
30| 7 [(1L1) 2 65,1.091,2.736, 006957
31|31 [ (1,1) | 2.736,~0.06957, 2.65, 1091, ~0.3231, ~3.129, 1.658, 0.09927
32|31 | (1,1) | —0.3231,—3.129,1.658,0.09927, 2.736, ~0.06957, 2.63, 1.091
33|81 [ (1,2) | 1.022,1.455,3.03,0.01963,0.8973, - 2.211, 1,335, 0.835
3434 | (1,2) | 0.8073,~2.241, ~1.335, —0.835, 1022, 1.455,3.03,0.04963
35|34 [ (1,2) | 3.03,0.04963, 1.022,1.455, - 1333, 0.835,0.8073, -2.241
36 |34 | (1,2) | —1.335,~0.835,0.8973, —2.241,3.03,0.04963, —1.022, 1.455
3718 [ (1,2) | 2.673,2.235,2.673,2.235, -0.8102, 1168, ~0.8402,1.168
38|18 | (1,2) | —0.8402, 1.168, ~0.8402, 1.168, 2.673,2.235, 2.673,2.235
qo o E T T 90 5 a7 5 A N EATE 410 5 690 —5 291 RaTE




Modular Data when G = Z /27 x Z/4Z

@ The center C has rank 88 with the following simple objects:

8 invertible objects

8 with dimension 5 + 2v/6

28 with dimension 2(3 + 21/6)
44 with dimension 4 + 2v/6

@ S and T for its pointed subcategory:

1 1 1
—1
1
—1
1
—1
1

Spt -

e e e
e e e
-

1

pt—dlag[l i, 1, 1,

1
1
1
1
1
-1 1 -1
1
1
-1, —i, =1, —1].
@ Boson: self-dual invertible object with twist 6, = 1.

@ C has two fermions and one boson b.



Boson Condensation

@ Let C be modular and Rep(G) = D C C a Tannakian subcategory.

@ The G-de-equivariantization Cg of C is a braided GG-crossed category.
e Trivial component [C¢], is modular, dim([C¢],) = dim(C)/|G/?

@ [Cg], is the boson condensation of C, [Cq], = (Ce(D))

If Rep (Z3) = (b) C C, let F be the Z/2-de-equivariantization functor.

Restricting to the centralizer of (b),

0 if b X =Y # X, then F(X) = F(Y) is simple with same
dimension.

0 ifb® X = X, then F(X) = X; & Xy, X, simple with dim(X)/2.

(] 9F(X) = 9)(.



From the Center to Super-modular

Let C be the Drinfeld center of a near-group category of type
7/27 x /A7 + 8.

o Condense the boson b to obtain modular category [Cz/27]o-
e rank = 36.

o dimensions are 1, 5+ 2v/6, 2(3 +v/6), 3+ V6, 4 + 26, 2+ /6.

° [CZ/QZ]O contains semion objects (self-dual invertible with twist +i).
° [Cz/2z]0 = DX C(Z/2Z,q), where D is a spin modular category.
e D DO @Dl, D(] = CC(<f>)

@ Dy is a super-modular category.



Realizing the 2nd Class of Modular Data

@ The 2nd class of modular data can be obtained from the center of
near-group categories of type Z/27 x Z/AZ + 8.

Theorem (Rowell-Solomon-Z7)

Let C be the Drinfeld center of a near-group category of type

Z)27 x Z/AZ + 8. Then [Cz/2z)0 = DX C(Z/2Z,q), where D is a spin
modular and q is the associated quadratic form restrict to Z/27Z. The Miiger
centralizer of (f) in D has the following family of modular data

1 5+ 2V6 34+ V6 34+ V6 4+ 2V6
5+ 2V6 1 3+ V6 3+ V6 —4 —2V6

S = |3+v6 3+ V6 737\/67i/6(2\/5+5) —37\/54»1’/6(2\/54»5) 0
3+6 3+V6  —3-vB+i/6(2v6+5) —vE—iy/6(2v6+5) -3 0

442V6 —4-—2V6 0 0 4426

72 = Diag [1, 1,-1, —1,e2”/3}



Other Examples from Near-group Centers

| Type of F | Conj. form of Z(F) Notes
Z]1+1 Fib X Fib™ F =Fib
Z]2+2 SU2)10 [BRW]
Z/3+3 G(2); KC(Z/3,Q) rank(G(2)3) = 6 [NRWW]

X,Z2./2

7)2 % 7)2 + 4 ([[SU(Q)??]M}O)Z i [BPRZ]
74+ 4 [PSU(3)s K C(Z/2,Q)]} /5 | rank(PSU(3)5) = 7
Z/5+5 BXC(Z/5,Q) rank(B) = 8
Z/6+6 DXC(Z/3,Q) D in Theorem 1 [RSZ]
Z]T+7 BXC(Z]7,Q) rank(B) = 10
Z/8+8 [G(2)4KC(Z/4,Q))557 | rank(G(2)4) = 9
Z/2xZ/A+8 | [D &C(Z/Q,Q)]Zx/f 2 D in Theorem 2 [RSZ]

Table: Familiar categories conjecturally related to centers of G 4 n near-group

categories.




Thank you!



