Modular Data of Non-semisimple Modular **Categories**

Qing Zhang

UC Santa Barbara

Joint work with Liang Chang, Quinn Kolt, and Zhenghan Wang arXiv:2404.09314

August 7, 2024

Related work

- \blacktriangleright [Lyubashenko95] Projective SL₂(\mathbb{Z})-action on a Hopf algebra in a (non-semisimple) modular category over C.
- \blacktriangleright [Lyubashenko-Majid94] Projective SL₂(\mathbb{Z})-action on a finite dimensional factorizable ribbon Hopf algebra H:

$$
S_{LM}(x) = (\mathsf{id} \otimes \lambda) (R_{21}(1 \otimes x)R), \quad T_{LM}(x) = \theta x
$$

for all $x \in H$.

$$
\blacktriangleright S_{LM} = \mathbf{f}_Q \circ \Psi.
$$

- \blacktriangleright $(S_{LM})^4 = S^2$, where S is the antipode.
- \blacktriangleright The center $Z(H)$ is S_{LM} -stable.

Related work

 \blacktriangleright [Kerler95] Let q be primitive $2r + 1$ th root. The $SL_2(\mathbb{Z})$ -representation on the center of u_q s[{]2} decomposes as

$$
Z(u_q\mathfrak{sl}_2)=\mathcal{P}_{r+1}\oplus \mathbb{C}^2\otimes \mathcal{V}_r.
$$

- ▶ [Lachowska03] An ideal of the center of small quantum group which is $SL_2(\mathbb{Z})$ -invariant.
- ▶ [Cohen-Westreich08] The Higman ideal of H is a $SL_2(\mathbb{Z})$ -submodule of $Z(H)$; a Verlinde-type formula for $\text{Hig}(H)$.
- ▶ [Gainutdinov-Runkel20] Generalize the results to modular categories.

Modular category

Let $\mathcal C$ be a braided tensor category over $\mathbb C$.

 \blacktriangleright Müger center of \mathcal{C} :

Ob
$$
(C')
$$
 := { $X \in C \mid c_{Y,X}c_{X,Y} = \text{Id}_{X \otimes Y}, \forall Y \in C$ }

- ▶ C is symmetric if $C' \cong C$.
- ▶ C is non-degenerate if $C' \cong$ Vec.
- \triangleright A modular category β is a non-degenerate ribbon finite tensor category.

From Hopf algebra to modular category

Let H be a Hopf algebra.

- ▶ (H, R) is quasi-triangular. \iff Rep (H) is braided.
- ▶ (H, R) is a ribbon algebra \Longleftrightarrow Rep (H) is a ribbon category. (H, R) is a ribbon algebra if $\exists \theta$ (central) $\in H$ s.t. $\Delta(\theta)=\left(R_{21}R_{12}\right)^{-1}(\theta\otimes\theta),\quad \epsilon(\theta)=1,\quad \text{ and }\quad \mathcal{S}(\theta)=\theta$
- ▶ (H, R) is factorizable \Longleftrightarrow Rep (H) is non-degenerate.

 (H, R) is called factorizable if the f_{Q} is an isomorphism of vector spaces, where \mathbf{f}_{Q} is the Drinfeld map $\mathbf{f}_{Q}:H^{\ast}\rightarrow H$ defined by

$$
\mathbf{f}_Q(p)=(p\otimes \mathsf{Id})(Q)
$$

where $Q = R_{21}R_{12}$.

Modular data of semisimple modular categories

▶ Verlinde formula

$$
N_{XY}^Z = \sum_W \frac{S_{XW} S_{YW} S_{Z^*W}}{S_{1W}}
$$

▶ Congruence kernel of the $SL_2(\mathbb{Z})$ -representation ρ

 \blacktriangleright $H < SL_2(\mathbb{Z})$ is called a congruence subgroup if H contains some $\Gamma(n) := \{A \in SL_2(\mathbb{Z}) : A \equiv I \pmod{n}\}.$

•
$$
SL_2(\mathbb{Z})/\Gamma(n) \cong SL_2(\mathbb{Z}/n\mathbb{Z})
$$
 for all $n > 1$.

[Ng-Schauenburg '10] If $N = \text{ord}(\mathcal{T})$,

•
$$
\rho
$$
 factors through $SL_2(\mathbb{Z}/N\mathbb{Z})$.

$$
\blacktriangleright \mathbb{Q}(S) \subset \mathbb{Q}(\zeta_N), N = \text{ord}(\mathcal{T}).
$$

Non-semisimple modular categories

Let $\mathcal C$ be a non-semisimple modular category.

- \triangleright Total rank: rank $+$ {proj. indecomp. objects not simple}}
- ▶ Steinberg object: An object is called Steinberg if it is both simple and projective.
- \triangleright [Cohen-Westreich08] Let H be a factorizable ribbon Hopf algebra. Then there exists at least one simple and projective H-module.
- \triangleright [Gainutdinov-Runkel20] C always contains a Steinberg object.

Proposition [Chang-Kolt-Wang-Z]

Any modular category of total rank $<$ 5 is semisimple.

Non-semisimple modular categories from u_a 5 b_a

Let
$$
q \in \mathbb{C}^{\times}
$$
, $q \neq \pm 1$.

Quantum group
$$
U_q
$$
si₂
\n U_q si₂ = $\mathbb{C}\left\langle E, F, K^{\pm 1} \middle| [E, F] = \frac{K - K^{-1}}{q - q^{-1}}, KE = q^2 EK, KF = q^{-2} FK \right\rangle$
\n $\Delta(E) = 1 \otimes E + E \otimes K, \Delta(F) = K^{-1} \otimes F + F \otimes 1, \Delta(K^{\pm}) = K^{\pm} \otimes K^{\pm}$
\n $\epsilon(E) = \epsilon(F) = 0, \quad \epsilon(K) = \epsilon(K^{-1}) = 1.$
\n $S(E) = -EK^{-1}, \quad S(F) = -KF, \quad S(K) = K^{-1}, \quad S(K^{-1}) = K.$

Small quantum group u_q sl₂

Let q be a primitive l th root of unity, where l is odd.

$$
u_q\mathfrak{sl}_2=U_q\mathfrak{sl}_2/(\mathsf{E}^l,\mathsf{F}^l,\mathsf{K}^l-1).
$$

 u_q sl $_2$ is finite dimensional with basis $\left\{E^iF^jK^\ell\right\}_{0\leq i,j,\ell\leq p-1}.$ $Rep(u_q \mathfrak{sl}_2)$ is a finite tensor category.

Non-semisimple modular categories from u_a sl₂ (continued)

Let q be a primitive odd $l = 2h + 1 \ge 3$ th root of unity. The Hopf algebra u_{α} s l_2 is

▶ Quasi-triangular

$$
R = \frac{1}{l} \sum_{0 \le i,j,k \le l-1} \frac{(q - q^{-1})^k}{[k]!} q^{k(k-1)/2 + 2k(i-j)-2ij} E^k K^i \otimes F^k K^j
$$

► Ribbon
$$
\theta =
$$

\n
$$
\frac{1}{l} \left(\sum_{r=0}^{l-1} q^{hr^2} \right) \left(\sum_{0 \le m, j \le l-1} \frac{\left(q - q^{-1} \right)^m}{[m]!} (-1)^m q^{-\frac{1}{2}m + mj + \frac{1}{2}(j+1)^2} F^m F^m K^j \right)
$$

\blacktriangleright Factorizable

 \blacktriangleright Therefore, $\text{Rep}(u_q\mathfrak{sl}_2)$ is a non-semisimple modular category.

Double of Nichols Hopf algebra

Nichols Hopf Algebra

 $\mathcal{K}_n=\mathbb{C}\left\langle K,\,\xi_i,i=1,2,\ldots,n\mid K\xi_iK=-\xi_i,\xi_i\xi_j=-\xi_j\xi_i,K^2=1\right\rangle,$ $\Delta(K) = K \otimes K$, $\Delta(\xi_i) = K \otimes \xi_i + \xi_i \otimes 1$, $\epsilon(K) = 1, \, \epsilon(\xi_i) = 0.$ $S(K) = K, S(\xi_i) = -K\xi_i.$

 \blacktriangleright \mathcal{K}_n is a Hopf algebra of dimension 2^{n+1} .

- \blacktriangleright DK_n is factorizable.
- \triangleright DK_n is ribbon when *n* is even.
- \blacktriangleright Rep($D\mathcal{K}_n$) is modular when *n* is even.

 \blacktriangleright Total Rank: 6 for all n.

Cartan Matrix

Let C be finite tensor category.

- ▶ A filtration $0 = X_0 \subset X_1 \subset \cdots \subset X_{n-1} \subset X_n = X$ is called a Jordan-Hölder series if X_i/X_{i-1} is simple for all *i*.
- ▶ By the Jordan-Hölder theorem, the number of any simple object $Y = X_i/X_{i-1}$ is the same in any two Jordan-Hölder series.

Denote this number by $[X: Y]$ and call it the multiplicity of Y in X .

 \blacktriangleright The Cartan matrix C of C has entries

 $C_{i,j}=[P_i:V_j],$

where $\mathsf{V}_i, \mathsf{P}_i$ are simple objects in $\mathcal C$ and their projective covers.

- Etingof-Ostrik04 det(C) = 0 if C is non-semisimple and admits an isomorphism of additive functors $u : \mathsf{Id}_\mathcal{C} \to \ast \ast$.
- \blacktriangleright Two projective indecomposable objects X, Y are c-equivalent if they have the same column in the Cartan matrix.

Fusion rings - $Gr(\mathcal{C})$

Let $\mathcal C$ be finite tensor category.

 $Gr(C)$

▶ The associated class $[X] \in Gr(\mathcal{C})$ of $X \in \mathcal{C}$ is given by $[X] = \sum_{i=1}^{n} [X : X_i] X_i.$ $X_i \in \text{Irr}(\mathcal{C})$

Multiplication: $\left[X_j\right]\left[X_k\right]:=\left[X_j\otimes X_k\right]$

▶ Projective objects become sums of simple objects.

E.g., Rep $(u_q \mathfrak{sl}_2)$, q is a primitive 3rd root Simple objects V_1 , V_2 , V_3 . Projective covers $P_1, P_2, P_3 \cong V_3$. $[P_1] = 2[V_1] + 2[V_2]$.

Fusion rings - $K_0(\mathcal{C})$

$K_0(\mathcal{C})$

 \triangleright Abelian group generated by the isomorphism classes $[P]$ of projective object P modulo the relations $[P \oplus Q] = [P] + [Q]$.

Multiplication: $[P][Q] = [P \otimes Q]$ for any projective objects P and Q in C .

- \triangleright No elements in $K_0(\mathcal{C})$ representing simple V_i unless it is projective.
- In general, $K_0(\mathcal{C})$ can be a ring without a unit (rng).

Mixed fusion module

- ▶ Consider $\{ [P_i]_c \}_{V_i \in \text{Irr}(\mathcal{C})}$, where $[P_i]_c$ is the c-class of P_i .
- ▶ $V_i \otimes P_i$ decomposes as a direct sum of indecomposable projective objects.
- ▶ Mixed fusion coefficients

$$
V_i\otimes P_j\cong \oplus_{k=1}^m N_{ij}^k(m)[P_k]_c\,,
$$

where

- \blacktriangleright m is the rank of the Cartan matrix.
- $\blacktriangleright N_{ij}^k(m) = \sum_{P_k \in [P_k]_c} N_{ij}^k(t)$, where $N_{ij}^k(t)$ is the fusion coefficient in the full fusion ring of C .

 \blacktriangleright Mixed fusion matrices: $N^{i}(m)$, where $(N^{i}(m))_{jk} = N^{k}_{ij}(m)$.

Examples of low-rank NSS modular categories

Consider $\text{Rep}(u_q\mathfrak{sl}_2)$, where q is a 3rd root:

 \blacktriangleright Total rank 5:

Simple objects V_1 , V_2 , V_3 Projective covers $P_1, P_2, P_3 \cong V_3$ (Steinberg object)

 \blacktriangleright Cartan matrix:

$$
C = \left(\begin{array}{rrr} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right)
$$

 P_1 and P_2 are c-equivalent.

\blacktriangleright Fusion rules:

 $V_1 \otimes X \cong X$, $V_2 \otimes V_2 \cong V_1 \oplus V_3$, $V_2 \otimes V_3 \cong P_2$, $V_2 \otimes P_1 \cong 2V_3 \oplus P_2$, $V_2 \otimes P_2 \cong 2V_3 \oplus P_1$, $V_3 \otimes V_3 \cong V_3 \oplus P_1$, $V_3 \otimes P_1 \cong 2V_3 \oplus 2P_2$, $V_3 \otimes P_2 \cong 2V_3 \oplus 2P_2$.

Examples of low-rank NSS modular categories (continued)

Consider Rep (DK_n) , where *n* is an even number.

 \blacktriangleright Total rank 6:

Simple objects: $V_1, V_{K\bar{K}}, V_K, V_{\bar{K}}$ Projective covers: $P_1, P_{K\bar{K}}, V_K, V_{\bar{K}}$ (Steinberg objects)

 \blacktriangleright Cartan matrix:

$$
C = \left(\begin{array}{cccc} 2^{2n-1} & 2^{2n-1} & 0 & 0 \\ 2^{2n-1} & 2^{2n-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)
$$

 P_1 and $P_{K\bar{K}}$ are c-equivalent.

▶ Does finiteness hold for modular categories with the same Cartan matrix?

▶ Mixed fusion matrices: $N^1 = I_3$, $N^K = N^{\bar{K}} =$ $\sqrt{ }$ \mathcal{L} 0 1 1 2^{2n-1} 0 0 2^{2n-1} 0 0 \setminus $\Big\}$, $N^{K\bar{K}}=$ $\sqrt{ }$ $\overline{1}$ 1 0 0 0 0 1 0 1 0 \setminus $\overline{1}$

Higman ideal of a finite dimensional Hopf algebra

Let H be a f.d. Hopf algebra.

 \blacktriangleright *H* is a left *H*-module via the left adjoint action:

$$
(\mathsf{ad}\,h)(a):=\sum h_1aS(h_2)
$$

for all $h, a \in H$ and S is the antipode of H.

 \blacktriangleright Let $\Lambda \in H$ be the left integral of H. Then $(ad\Lambda)(H)$ is an ideal of $Z(H)$.

 \triangleright Define the Higman ideal of H by

$$
\mathsf{Hig}(H) = (\mathsf{ad}\, \Lambda)(H)
$$

 \blacktriangleright [Lorenz97] dim(Hig(H)) = rank (C), where C is the Cartan matrix.

Higman ideal of a finite dimensional Hopf algebra

Let H be a f.d. factorizable ribbon Hopf algebra.

▶ Define $p_a \in H^*$ by

$$
\langle p_a,b\rangle:=\mathsf{Tr}(I(b)\circ r(a)),
$$

for $b \in H$, where $I(b)$, $r(a)$ denote left and right multiplication by a and b.

Let $\{V_i\}_{i=1}^n$ be the set of irre. left *H*-module and $\{e_i\}_{i=1}^n$ be the corresponding orthogonal primitive idempotent.

$$
\blacktriangleright \ \ p_{e_i} = \chi_{Ae_i} = \sum_{k=1}^n c_{ki} \chi_k, \text{ where } \chi_k = \chi_{V_k} \text{ is the irre. character.}
$$

$$
\blacktriangleright \text{ [Bass76] Let } I(H) = \{p_a \mid a \in H\}, \text{ then}
$$

 $I(H) = Sp_{k} \{p_{e} | e \text{ a primitive idempotent of } H\}$

 \triangleright [Cohen-Westreich08] dim $(I(H)) =$ rank of the Cartan matrix.

Cohen-Westreich S-matrix

Let (H, R) be a f.d. factorizable ribbon Hopf algebra

Let
$$
u = \sum_i S(t_i) s_i
$$
, $R = \sum s_i \otimes t_i \in H \otimes H$.

- ► Let $f_Q: H^* \to H$ be the Drinfeld map, θ be the ribbon element, and λ be the right integral of H^* .
- \blacktriangleright Consider the $n \times n$ matrix

$$
B_{i,j} = \left\langle \widehat{f}_{Q} \left(p_{e_i} \right), \widehat{\Psi} S \left(e_j \right) \right\rangle
$$

= $\left\langle f_{Q} \left(\left(\sum_{k=1}^{n} c_{ki} \chi_k \right) \leftarrow u^{-1} \theta \right), \left(\lambda \leftarrow \theta^{-1} u e_j \right) \right\rangle$

then B is a symmetric matrix.

- \blacktriangleright For any matrix A we denote by A_m the $m \times m$ major minor of A.
- ▶ Define $S_{CW} = C_m^{-1} B_m$, where C is the Cartan matrix of rank m.

Cohen-Westreich S-matrix (continued)

 \triangleright S_{CW} is the change of basis matrix for the following two bases for the Higman ideal

$$
B_{\chi} = \left\{\widehat{f}_{Q}\left(p_{e_j}\right)\right\}_{j=1}^{m}, \quad B_{\tau} = \left\{\text{(ad Λ)}\left(e_j\right)\right\}_{j=1}^{m}
$$

▶ For all $1 \le i \le n$.

$$
S_{CW}^{-1} N^i(m) S_{CW} = \text{Diag} \{ d_1^{-1} s_{i1}, \ldots, d_m^{-1} s_{im} \}
$$

where $d_i = \dim (V_i)$, $s_{ij} = \left\langle \widehat{f}_{Q} \left(\chi_i \right), \chi_j \right\rangle$.

▶ [Gainutdinov-Runkel20] Generalizes to modular categories.

Center of u_a sl₂

[Kerler95] Let $l = 2r + 1$ be an odd number and q be a primitive /th root of unity. The $SL_2(\mathbb{Z})$ representation on the center Z of u_q sl₂ decomposes as

$$
Z=\mathcal{P}_{r+1}\oplus \mathbb{C}^2\otimes \mathcal{V}_r,
$$

where

- \triangleright \mathcal{P}_{r+1} is an $(r+1)$ -dimensional representation.
- $\blacktriangleright \mathbb{C}^2$ is the standard representation of $\mathsf{SL}_2(\mathbb{Z})$.
- $\triangleright \; \mathcal{V}_r$ is an r dimensional representation when restricted on which the matrices S_{LM} and T_{LM} are the same as those obtained by a semisimple modular category.

Cohen-Westreich modular data for u_a \mathfrak{sl}_2

Restricting to P_{r+1} ,

$$
S_{CW} = \frac{1}{\sqrt{7}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 2 & q + q^{-1} & \cdots & q^r + q^{-r} \\ \vdots & \vdots & \ddots & \vdots \\ 2 & q^r + q^{-r} & \cdots & q^{r^2} + q^{-r^2} \end{pmatrix}
$$

$$
T_{CW} = \kappa \operatorname{Diag} \{-q^{-\frac{1}{2}}, 1, \cdots, (-1)^{s+1} q^{\frac{1}{2}(r^2-1)}, \cdots, (-1)^{r+1} q^{\frac{1}{2}(r^2-1)} \}
$$

- ▶ Restricting to V_r , (S_{semi}, T_{semi}) is a $PSU(2)_{l-2}$ up to a Galois conjugation.
- \blacktriangleright (S_{CW}, T_{CW}), (S_{semi}, T_{semi}) corresponds to the even and odd part of the modular data from a pointed modular tensor category $C(\mathbb{Z}/I\mathbb{Z}, Q)$, respectively.

Theorem [Chang-Kolt-Wang-Z]

The $SL_2(\mathbb{Z})$ -representation on the Higman ideal of u_q sl(2) has kernel congruence subgroup of $SL_2(\mathbb{Z})$.

Cohen-Westreich modular data for $D\mathcal{K}_n$

Suppose n is even.

 \blacktriangleright The S_{CW} - and T_{CW} -matrices on the Higman ideal of DK_n are given by

$$
S_{CW} = (-1)^{n/2} \left(\begin{array}{ccc} 0 & 2^{-n} & -2^{-n} \\ 2^{n-1} & 1/2 & 1/2 \\ -2^{n-1} & 1/2 & 1/2 \end{array} \right), \quad T_{CW} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right).
$$

▶ This can be further decomposed as $\mathbb{C}_{\text{triv}} \oplus N_1$, where N_1 is the level 2 representation.

Corollary [Chang-Kolt-Wang-Z]

The $SL_2(\mathbb{Z})$ -representation on the Higman ideal of DK_n has kernel congruence subgroup of $SL_2(\mathbb{Z})$.

Conjecture

The congruence kernel theorem holds for the Cohen-Westreich modular data of a non-semisimple modular category.

Thank You!