Lecture 2 Integrals as General and Particular Solutions

Integrating Both Sides

• The first-order equation $\frac{dy}{dx} = f(x, y)$ takes an especially simple form if the right-hand-side function f does not actually involve the dependent variable y, so

$$y' = \frac{dy}{dx} = f(x) \tag{1}$$

• In this special case we need only integrate both sides of the equation to obtain

$$y(x) = \int f(x)dx + C \tag{2}$$

• This is a general solution of the differential equation, meaning that it involves an arbitrary constant C, and for every choice of C it is a solution of the differential equation.

Example 1 Find a function y = f(x) satisfying the given differential equation and the prescribed initial condition.

ANS: We have
$$\frac{dy}{dx} = (x-2)^2$$
; $\frac{y(2)=1}{y(2)=1}$
ANS: We have $\frac{dy}{dx} = x^2 + 4x + 4$
Integrating both sides. We have
 $y = \int x^2 + 4x + 4 \, dx + c$
 $= \frac{1}{3}x^3 - 2x^2 + 4x + c$ general solution
Thus $y(x) = \frac{1}{3}x^3 - 2x^2 + 4x + c$, where c is any constant.
As $y(2) = \frac{1}{3} \cdot 2^3 - 2x^4 + 4x + c = 1$. $\Rightarrow c = 1 - \frac{8}{3} = -\frac{5}{3}$

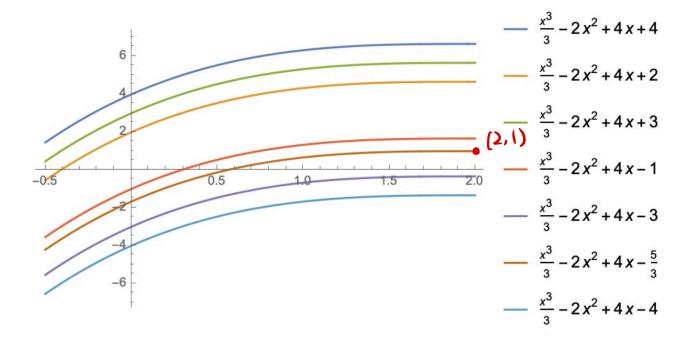
Thus $y(x) = \frac{1}{3}x^3 - 2x^2 + 4x - \frac{1}{3}$ (particular solution)

Let's look at the graph of the general solution

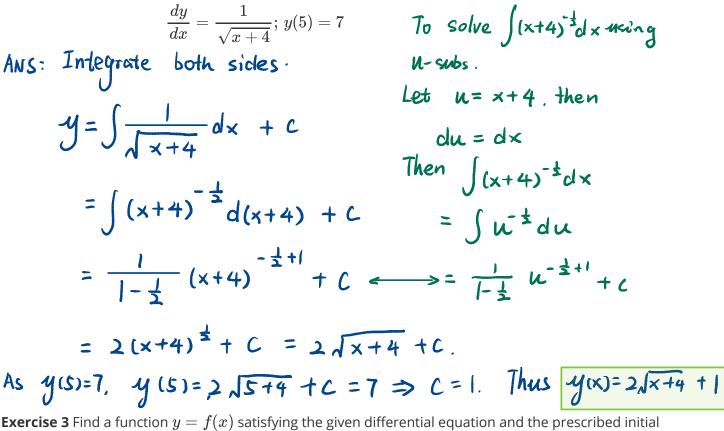
$$y = \frac{1}{3}x^3 - 2x^2 + 4x + C$$

and the particular solution

 $y = \frac{1}{3}x^3 - 2x^2 + 4x - \frac{5}{3}$



Example 2 Find a function y = f(x) satisfying the given differential equation and the prescribed initial condition.



Exercise 3 Find a function y = f(x) satisfying the given differential equation and the prescribed initia condition.

$$rac{dy}{dx} = rac{1}{\sqrt{1-x^2}}; \,\, y(0) = 0$$

ANS: We have $y = \int \frac{1}{\sqrt{1-x^{2}}} dx + C$ $= \sin^{-1}x + C$ As y(0) = 0, we know $y(0) = \sin^{-1}0 + C = 0$, C = 0Thus $y = \sin^{-1} x$