Lecture 1 Differential Equations and Mathematical Models

Differential Equations

Changing Quantities

- The laws of the universe are written in the language of mathematics.
- Algebra is sufficient to solve many static problems,
- but the most interesting natural phenomena involve change and are described by equations that relate to changing quantities.

Derivative as Rate of Change

- Because the derivative dx/dt = f'(t) of the function f is the rate at which the quantity x = f(t) is changing with respect to the independent variable t.
- It is natural that equations involving derivatives are frequently used to describe the changing universe.
- What is a **differential equation**?

An equation relating an unknown function and one or more of its derivatives is called a **differential equation**.

Examples of differential equations

• The equation

Order of a differential equs is
the order of the highest derivative
present in the eqn.
$$\frac{dx}{dt} = x^2 + t^2$$
(1)

involves the unknown function x(t) and its first derivative x'(t).

• The equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 7y = 0$$
 (second - order diff. eqn. (2)

involves the unknown function y(x) and its first two derivatives.

Goals of the Study of Differential Equations

Three Goals

The study of differential equations has three principal goals:

- 1. To **discover** the differential equation that describes a specified physical situation.
- 2. To **find** either exactly or approximately the appropriate solution of that equation.
- 3. To **interpret** the solution that is found.

Unknowns

• In algebra, we typically seek the unknown numbers that satisfy an equation such as

$$x^3 + 7x^2 - 11x + 41 = 0.$$

• By contrast, in solving a differential equation, we are challenged to find the unknown functions y = y(x) for which an identity such as y'(x) = 2xy(x) - that is, the differential equation

$$rac{dy}{dx} = 2xy$$

holds on some interval of real numbers.

• Ordinarily, we will want to find *all solutions* of the differential equation, if possible.

Example 1 Substitute $y = e^{rt}$ into the given differential equation to determine all values of the constant r for which $y = e^{rt}$ is a solution of the equation.

Ans: If
$$y(t) = e^{rt}$$
, then
 $y'' + 3y' - 4y = 0$ \textcircled{C}
Chain Rule:
 $y'(t) = (e^{rt})' = (rt)'e^{rt} = re^{rt}$
 $y''(t) = (re^{rt})' = r^{2}e^{rt}$
 $f(g(t)))' = f'(g(t) \cdot g'(t))$
 $g''(t) = (re^{rt})' = r^{2}e^{rt}$
 $f(g(t)))' = cos(2t) \cdot 2$
 $f(g(t)) = cos(2t) \cdot 2$
 $re^{rt} + 3 \cdot re^{rt} - 4 e^{rt} = 0 \Rightarrow (r^{2} + 3r - 4) e^{rt} = 0$
As $e^{rt} \neq 0$, we have $r^{2} + 3r - 4 = (r + 4)(r - 1) = 0$
 $\Rightarrow r = -4$ or $r = 1$. Thus $y(t) = e^{-4t}$ and $y(t) = e^{t}$ are solutions to

Example 2 Verify that y(x) satisfies the given differential equation. Then determine a value of the constant C so that y(x) satisfies the given initial conditon.

$$y' = x - y; y(x) = Ce^{-x} + x - 1, y(0) = 10$$

ANS: $LHS = Y'(x) = (Ce^{-x} + x - 1)' = -Ce^{-x} + 1$
 $RHS = x - y = x - (Ce^{-x} + x - 1) = -Ce^{-x} + 1$
Thus y satisfies the given diff. eqn.
Since $Y(0) = 10$.
 $Y(0) = C \cdot e^{-0} + 0 - 1 = C - 1 = 10$
 $\Rightarrow C = 11$
Thus we have $Y = 11e^{-x} + x - 1$

Mathematical Models

The Process of Mathematical Modeling

- The following example (**Example 3**) illustrates the process of translating scientific laws and principles into differential equations.
- We will see more mathematical models throughout this semester.

N' lt) = $\frac{dN}{dt}$

Example 3 In a city with a fixed population of \underline{P} persons, the time rate of change of the number N of those persons infected with a certain contagious disease is proportional to the product of the number who have the disease and the number who do not. Set up a differential equation for N.

ANS
$$N(t)$$
 P-N(t) multiply by a constant k
We know
The # of persons with the diseas: N(t)
The rate of change of N(t): $\frac{dN(t)}{dt} = N'(t)$
The # who do not have the disease: P-N(t)
N'(t) = $\frac{dN}{dt} = k \cdot N(t) \cdot (P - N(t)) \Rightarrow \frac{dN}{dt} = k N(P - N)$