From 3-manifolds to modular categories

Qing Zhang

UC Santa Barbara

Motivation

- ► Tensor categories → invariants of 3-manifolds
- ➤ 3 manifolds → tensor categories?
- ► First proposed by Cho-Gang-Kim JHEP 2020, 115(2020)
- Mathematically improved by Cui-Qiu-Wang arXiv: 2101.01674
 - ▶ Representations $\rho: \pi_1(X) \to \mathsf{SL}(2,\mathbb{C}) \quad \leadsto \quad \mathsf{simple objects}$
- "Inverse problem" of Volume Conjecture?

Correspondence based on (S, T)

Theorem (Cui-Qiu-Wang)

Let M be a Seifert fibered space with three singular fibers. The ribbon fusion category constructed from M is

$$\mathcal{B}_{M} := \left(\boxtimes_{k=1}^{3} \mathsf{TLJ}(A_{k})^{e} \right) \bigoplus \left(\boxtimes_{k=1}^{3} \mathsf{TLJ}(A_{k})^{o} \right)$$

Theorem (Cui-Gustafson-Qiu-Z)

For a general torus bundle over S^1 with SOL geometry, there exists a finite abelian group G and a quadratic form q such that the corresponding ribbon fusion category is the \mathbb{Z}_2 -equivariantization of C(G,q).

Rep(G)

A monoidal category $(C, \otimes, \alpha, I, r, \mathbf{1})$, where

$$l_X: \mathbf{1} \otimes X \xrightarrow{\sim} X$$
 (left unitor) $r_X: X \otimes \mathbf{1} \xrightarrow{\sim} X$ (right unitor) $\alpha_{X,Y,Z}: (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$ (associator)

Let G be a finite group.

 $\mathcal{C} = \text{Rep}(G)$, category of finite dimensional representations of G over \mathbb{C} .

- ► Monoidal
- ightharpoonup End(X) $\cong \mathbb{C}$ if X is irreducible (Shur's lemma)
- ▶ Semisimple: $X \cong \bigoplus_i m_i X_i$ (Maschke's theorem)
- $ightharpoonup \mathbb{C}$ -linear: $\operatorname{Hom}(X,Y) = \mathbb{C}^N$.
- Rigid

$$e_X: X^* \otimes X \to \mathbf{1}, \ i_X: \mathbf{1} \to X \otimes X^*$$

Fusion rules

In a **fusion** category, we have

- ▶ fusion rule : $X \otimes Y = \bigoplus N_{XY}^Z Z$
- ightharpoonup coefficients : $N_{X,Y}^Z = dim\ Hom(X \otimes Y, Z)$

S and T matrix

In a **ribbon fusion** category, let $X_i \in Irr(\mathcal{C})$.

► T matrix

$$\theta_X = \psi_X \delta_X : X \xrightarrow{\sim} X$$
, where $\psi_X : X^{**} \to X$.

$$\operatorname{End}(X_i) = \mathbb{C}$$

$$\theta_{X_i} = \theta_i \operatorname{Id}_{X_i}, \ \theta_i \in \mathbb{C}$$

$$T = diag(\theta_i)$$

► S matrix

$$f: X \to X$$

$$\mathbb{C}\cong \mathit{End}(1)\ni \mathit{tr}\; \mathit{f}:\; \mathbf{1}\to \mathbf{1}$$

$$\dim(X_i) := tr \ Id_{X_i}, \quad D^2 = \sum \dim(X_i)^2$$

$$S_{i,j} := tr(c_{X_i, X_i^*} \circ c_{X_i^*, X_i}) \in \mathbb{C}$$

Examples of modular categories

- Pointed: C(A, Q), finite abelian group A, non-deg. quadratic form Q on A.
- The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of a spherical fusion category \mathcal{C} .

 Objects of $\mathcal{Z}(\mathcal{C})$ are (Z, γ) , where Z is an object of \mathcal{C} and γ is half braiding.
- From quantum groups:

$$\mathfrak{g} \rightsquigarrow U_q \mathfrak{g} \stackrel{q = e^{\pi i/l}}{\leadsto} \operatorname{Rep}(U_q \mathfrak{g}) \stackrel{/\langle Ann(Tr) \rangle}{\leadsto} \mathcal{C}(\mathfrak{g}, I)$$

$\mathsf{SL}_2(\mathbb{Z})$ representation

Given a modular category with (unnormalized) modular data (S, T).

- ► $S^4 = \dim(C)^2 \operatorname{Id}$, $(ST)^3 = p^+ S^2$, where $p^{\pm} = \sum_i \theta_i^{\pm} d_i^2$.
- ▶ $\mathsf{SL}_2(\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \rangle$, where $\mathfrak{s} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\mathfrak{t} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- $ightharpoonup \mathfrak{s}^4 = \operatorname{Id}, (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2.$
- ▶ $\mathfrak{s} \mapsto S$, $\mathfrak{t} \mapsto T$ gives a projective representation $\bar{\rho}_{\mathcal{C}}$ of $\mathsf{SL}_2(\mathbb{Z})$.
- ► [Ng-Schauenburg '10]

If $N = \operatorname{ord}(T)$,

- $\bar{\rho}_{\mathcal{C}}$ factors through $SL_2(\mathbb{Z}/N\mathbb{Z})$.
- ▶ $\mathbb{Q}(S) \subset \mathbb{Q}(\zeta_N)$, N = ord(T).

$SL_2(\mathbb{Z})$ representation (continued)

- $\mathbf{r} := \frac{1}{\sqrt{\dim(\mathcal{C})}} S$ and $t := \frac{1}{\gamma} T$, where γ is any third root of the multiplicative central charge $\xi = p^+(\mathcal{C})/\sqrt{\dim(\mathcal{C})}$.
- ▶ $\mathfrak{s} \mapsto s$, $\mathfrak{t} \mapsto t$ gives a linear representation ρ of $\mathsf{SL}_2(\mathbb{Z})$.
- ► [Dong-Lin-Ng '15]

 If n = ord(t),
 - ρ factors through $\mathsf{SL}_2(\mathbb{Z}/n\mathbb{Z})$
 - $ightharpoonup \operatorname{im}(
 ho) \subset \operatorname{GL}_r(\mathbb{Q}(\zeta_n))$

$\mathsf{SL}_2(\mathbb{Z})$ representation (continued)

- ightharpoonup
 ho factors through $SL_2(\mathbb{Z}/n\mathbb{Z})$.
- ▶ Chinese Reminder Theorem $\to SL_2(\mathbb{Z}/p^k\mathbb{Z})$.
- Nobs 1976, Nobs and Wolfart 1976 Irreducible representations of $SL_2(\mathbb{Z}/p^k\mathbb{Z})$ are classified using subrepresentations of Weil representations.
- ▶ [Ng-Rowell-Wang-Wen '22] Reconstruction of modular data from irreducible representations of $SL_2(\mathbb{Z}/n\mathbb{Z})$.
 - Classification up to modular data, rank = 6.

Chern-Simons invariant

- ► X: a closed oriented 3-manifold
- $ho: \pi_1(X) \to \mathsf{SL}(2,\mathbb{C})$
- $\blacktriangleright \ \chi_{\rho} = \operatorname{Tr}_{\rho} : \pi_1(X) \to \mathbb{C}$
- ► Chern-Simons invariant

$$\mathsf{CS}(
ho) = rac{1}{8\pi^2} \int_X \mathsf{Tr}(dA_
ho \wedge A_
ho + rac{2}{3} A_
ho \wedge A_
ho \wedge A_
ho) \mod 1,$$

where $A_{\rho} \in \Omega^{1}(X; \mathfrak{sl}_{2})$ connection 1-form with holonomy ρ .

Adjoint Reidemeister Torsion

- $ightharpoonup C = (0 \longrightarrow C_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_1} C_0 \longrightarrow 0)$ is acyclic if $H_i(C) = 0$.
- Fix a basis c_i of C_i . Choose a basis b_i of $\operatorname{Im}(\partial_i)$, $b_i \sqcup \tilde{b}_{i-1}$ is a basis of C_i .
- ▶ Let D_i be the transition matrix from $b_i \sqcup \tilde{b}_{i-1}$ to c_i .
- ► Torsion of C

$$au(C,c) := \left| \prod_{i=0}^n \det\left(D_i\right)^{(-1)^{i+1}} \right|$$

- $ho:\pi_1(X)\to \mathsf{SL}(2,\mathbb{C})$
- $C(\tilde{X}) \otimes_{\mathrm{adj}_{\rho}} \mathbb{C}^{3} = \left(\cdots \to C_{i}(\tilde{X}) \otimes_{\mathrm{adj}_{\rho}} \mathbb{C}^{3} \stackrel{\partial_{i}}{\to} C_{i-1}(\tilde{X}) \otimes_{\mathrm{adj}_{\rho}} \mathbb{C}^{3} \to \cdots \right)$
- Adjoint Reidemeister Torsion

$$\mathsf{Tor}(
ho) := au \left(\mathit{C}(ilde{\mathsf{X}}) \otimes_{\mathrm{adj}_{
ho}} \mathbb{C}^3
ight)$$

Torus bundles over the circle

Let M be a torus bundle over S^1 with the monodromy map

$$\left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in \mathrm{SL}(2,\mathbb{Z}), \ \mathrm{where} \ |a+d+2| > 4.$$

- $ightharpoonup N := |a+d+2| > 4 \Leftrightarrow SOL$ geometry.
- Its fundamental group has the presentation, $\pi_1(M) = \langle x, y, h \mid x^a y^c = h^{-1} x h, x^b y^d = h^{-1} y h, xyx^{-1} y^{-1} = 1 \rangle$
- ► An example:

Consider M to be a torus bundle over S^1 with $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. We will use this example as we go through the program.

Program: Simple object types

- $ightharpoonup \mathcal{R}(X) = \{ \rho : \pi_1(X) \mapsto \mathsf{SL}(2,\mathbb{C}) \}$ representation variety
- $\blacktriangleright \chi(X) = \{\chi_{\rho} \mid \rho \in \mathcal{R}(X)\}$ character variety. Call ρ a preimage of χ_{ρ}

Definition

- ▶ A $\chi \in \chi(X)$ is non-Abelian, if at least one preimage ρ is non-Abelian, i.e., it has non-Abelian image in $SL(2,\mathbb{C})$.
- A non-Abelian χ is adjoint-acyclic, if all of its non-Abelian preimages ρ are adjoint-acyclic.
- Postulate 1: a simple object type is an adjoint-acyclic non-Abelian χ .
- Postulate 2: a label set L(X) is a finite set of simple object types with a prechosen type χ_0 such that

$$CS(\chi) - CS(\chi_0) \in \mathbb{Q}, \quad \forall \chi \in L(X).$$

The tensor unit is χ_0 .

Program: Simple object types (continued)

Example (Label set of M)

- Irreducibles ρ_k , k = 1, 2 $x \mapsto \begin{pmatrix} e^{\frac{2\pi ik}{5}} & 0 \\ 0 & e^{-\frac{2\pi ik}{5}} \end{pmatrix}, y \mapsto \begin{pmatrix} e^{\frac{4\pi ik}{5}} & 0 \\ 0 & e^{-\frac{4\pi ik}{5}} \end{pmatrix}, h \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$
- Reducibles ρ_{\pm} $x \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, y \mapsto \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}, h \mapsto \begin{pmatrix} v_{\pm} & 0 \\ 0 & v_{\pm}^{-1} \end{pmatrix},$ with $u = \frac{\sqrt{5}-1}{2}$, $v_{\pm} = \pm \frac{\sqrt{5}-1}{2}$.
- $ightharpoonup L(M) = \{
 ho_+,
 ho_-,
 ho_1,
 ho_2 \} \quad
 ho_0 :=
 ho_+ \quad \text{Identifying }
 ho \text{ with } \chi_{
 ho}$
- ► $CS = \{0, 0, \frac{1}{5}, -\frac{1}{5}\}$ Tor $= \{5, 5, \frac{5}{4}, \frac{5}{4}\}$

Program: Simple object types (continued)

$$H^1(X; \mathbb{Z}_2) = \operatorname{Hom}(\pi_1(X), \mathbb{Z}_2)$$

= $\{\sigma : \pi_1(M) \to \{\pm I_2\} \subset \operatorname{SL}(2, \mathbb{C})\}$ central representations

► The label set needs to satisfy:

$$\sum_{\rho_{\alpha} \in \mathcal{L}(X)} \frac{1}{2 \operatorname{\mathsf{Tor}} \left(\rho_{\alpha} \right)} = 1, \qquad \left| \sum_{\rho_{\alpha} \in \mathcal{L}(X)} \frac{\exp \left(-2 \pi i \operatorname{\mathsf{CS}} \left(\rho_{\alpha} \right) \right)}{2 \operatorname{\mathsf{Tor}} \left(\rho_{\alpha} \right)} \right| = \frac{\sqrt{|s(X)|}}{\sqrt{2 \operatorname{\mathsf{Tor}} \left(\rho_{0} \right)}}$$

Example (Label set of M (continued))

The two conditions are satisfied

$$H^1(M; \mathbb{Z}_2) = \mathbb{Z}_2 \qquad \rho_+ \leftrightarrow \rho_- \qquad s(X) = \{\rho_+, \rho_-\}$$

Program: Twists and dimensions

Postulate 3: the twist is

$$\theta_{\alpha} = e^{-2\pi i(\mathsf{CS}(\rho_{\alpha}) - \mathsf{CS}(\rho_{0}))}$$

Postulate 4: the quantum dimension is

$$D^2 = 2 \operatorname{Tor}(\rho_0)$$
 $\frac{d_{\alpha}^2}{D^2} = \frac{1}{2 \operatorname{Tor}(\rho_{\alpha})}$

Example (Twists and dimensions for M)

- \blacktriangleright $L(M) = \{\rho_+, \rho_-, \rho_1, \rho_2\}$ $\rho_0 := \rho_+$
- $CS = \{0, 0, \frac{1}{5}, -\frac{1}{5}\}$ $Tor = \{5, 5, \frac{5}{4}, \frac{5}{4}\}$
- $\bullet \ \theta = \left\{1, 1, e^{-\frac{2\pi i}{5}}, e^{\frac{2\pi i}{5}}\right\}$
- $ightharpoonup D = \sqrt{10} \quad |d| = \{1, 1, 2, 2\}$

Program: S-matrix

Definition

- ▶ A loop operator is a pair (a, R) where a is a conjugacy class of $\pi_1(X)$, and R is an irrep of $\mathrm{SL}(2, \mathbb{C})$.
- ▶ The weight of $\rho \in \mathcal{R}(X)$ w.r.t (a, R) is

$$W_{\rho}(a,R) := \operatorname{Tr}_{R}(\rho(a))$$

For example,

$$\mathsf{Sym}^j := (j+1) ext{-dim irrep}, \hspace{5mm} W_{
ho}\left(a, \mathsf{Sym}^1
ight) = \mathsf{Tr}(
ho(a)) = \chi_{
ho}(a)$$

Postulate 5: each type is associated with some loop operators,

$$\rho_{\alpha} \mapsto \{(a_{\alpha}^{\kappa}, R_{\alpha}^{\kappa})\}_{\kappa}$$
 guess-and-trial

$$W_{\beta}(\alpha) := \prod W_{\rho_{\beta}}\left(a_{\alpha}^{\kappa}, R_{\alpha}^{\kappa}\right) = \prod \operatorname{Tr}_{R_{\alpha}^{\kappa}}\left(\rho_{\beta}\left(a_{\alpha}^{\kappa}\right)\right), \quad \rho_{\alpha}, \rho_{\beta} \in L(X)$$

Program: S-matrix (continued)

Postulate 6: the un-normalized S-matrix is given by,

$$\tilde{S}_{\alpha\beta} = W_{\beta}(\alpha)W_{0}(\beta) \quad \Leftrightarrow \quad W_{\beta}(\alpha) = \frac{\tilde{S}_{\alpha\beta}}{\tilde{S}_{0\beta}}$$

In particular, $d_{\alpha} = W_0(\alpha)$.

Example (S-matrix for M)

$$\rho_{\pm} \mapsto (x, \operatorname{Sym}^{0}), \qquad \rho_{k} \mapsto (x^{-3k}, \operatorname{Sym}^{1}), k = 1, 2$$

$$W_0(k) = \operatorname{Tr}_{\operatorname{Sym}^1} \left(\rho_0 \left(x^{-3k} \right) \right) = 2$$

$$W_j(k) = \operatorname{Tr}_{\operatorname{Sym}^1} \left(\rho_j \left(x^{-3k} \right) \right) = 2 \cos \frac{4\pi jk}{5}$$

$$\tilde{S} = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 4\cos\frac{4\pi}{5} & 4\cos\frac{2\pi}{5} \\ 2 & 2 & 4\cos\frac{2\pi}{5} & 4\cos\frac{4\pi}{5} \end{pmatrix}, \quad T = \text{diag}(1, 1, e^{-\frac{2\pi i}{5}}, e^{\frac{2\pi i}{5}}),$$

which corresponds to a subcategory of $C(\mathfrak{so}_5, e^{-\frac{3\pi i}{10}}, 10)$.

Modular data from torus bundle over S^1

Theorem (Cui-Qiu-Wang)

Let M be the torus bundle over S^1 , with the monodromy matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 such that $N = a + d + 2 > 4$ is odd and (c, N) are coprime.

The modular data constructed from M matches that of $\mathcal{C}(\mathfrak{so}_N,q,2N)_{ad}$.

Theorem (Cui-Gustafson-Qiu-Z)

For a general torus bundle over S^1 with SOL geometry, there exists a finite abelian group G and a quadratic form q such that the corresponding ribbon fusion category is the \mathbb{Z}_2 -equivariantization of $\mathcal{C}(G,q)$.

(S, T) from Seifert fibered space

Theorem (Cui-Qiu-Wang)

Let M be a Seifert fibered space with three singular fibers.

The ribbon fusion category constructed from M is

$$\mathcal{B}_{M} := \left(\boxtimes_{k=1}^{3} \mathsf{TLJ}(A_{k})^{e} \right) \bigoplus \left(\boxtimes_{k=1}^{3} \mathsf{TLJ}(A_{k})^{o} \right)$$

Conjecturally, the resulting category from a general M is modular iff $H^1(M; \mathbb{Z}_2) = 0$.

Future questions

For hyperbolic 3-manifolds?

Conjecture: (W.-Yang '21)

Suppose for r sufficiently large, a hyperbolic cone metric on M with singular locus L and cone angles $\theta^{(r)}$ exists. We denote M with such a hyperbolic cone metric by $M^{(r)}$.

As r varies over all positive odd integers, the relative Reshetikhin-Turaev invariants

$$\operatorname{RT}_r(M, L, \mathbf{m}^{(r)}) = C \frac{e^{\frac{1}{2} \sum_{k=1}^n \mu_k \operatorname{H}^{(r)}(\gamma_k)}}{\sqrt{\pm \mathbb{T}_{(M \setminus L, \nu)}([\rho_{M^{(r)}}])}} e^{\frac{r}{4\pi} \left(\operatorname{Vol}(M^{(r)}) + i\operatorname{CS}(M^{(r)})\right)} \left(1 + O\left(\frac{1}{r}\right)\right),$$

where C is a quantity of norm 1 independent of the geometric structure on M.

- Construction beyond modular data. E.g., F-matrices, R-matrices.
- ▶ Operations on MTCs ↔ Constructions of 3-manifolds.
-

Thank you!