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Motivation

» Tensor categories — invariants of 3-manifolds
» 3 manifolds — tensor categories?

» First proposed by Cho-Gang-Kim JHEP 2020, 115(2020)

» Mathematically improved by Cui-Qiu-Wang arXiv: 2101.01674

> Representations p : m1(X) — SL(2,C) ~  simple objects
> classical Chern-Simons invariant ~»  twist

» adjoint-Reidemeister torsion ~» quantum dim

» "Inverse problem” of Volume Conjecture?



Correspondence based on (S, T)

Theorem (Cui-Qiu-Wang)

Let M be a Seifert fibered space with three singular fibers.
The ribbon fusion category constructed from M is

By = (Ki_; TLI(AK)) €D (Ki; TLI (A)°)

Theorem (Cui-Gustafson-Qiu-Z)

For a general torus bundle over S* with SOL geometry, there exists a finite
abelian group G and a quadratic form q such that the corresponding
ribbon fusion category is the Zy-equivariantization of C(G, q).
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Rep(G)

A monoidal category (C,®,a,l,r,1), where

Ix : 1® X = X (left unitor) rx : X ®1 = X (right unitor)
axyz: (X®Y)®Z = X®(Y®Z) (associator)

Let G be a finite group.

C = Rep(G), category of finite dimensional representations of G over C.
» Monoidal
» End(X) = C if X is irreducible (Shur's lemma)
» Semisimple: X = @;m;X; (Maschke's theorem)
» C-linear: Hom(X,Y)=CNV.

» Rigid
ex X' X =1, ix:1—-XX*
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X =2om;X; Hom(X,Y)e CN

Cx. v : X®Y —-Y® ex: X*®@X—1
ix: 1> X®X*

[ monoidal H (C. Bl 1)




[ modular tensor category ]

[ribbon fusion ]

[Irr(C)| < o
1 is simple

[semisimple]
X =2p;m;X;

ex: X*@X—1
ix : 1> X ®X*

| monoidal Js—— (C,®,0,1,7,1)
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1is simple

semisimple C -linear

X = om X, Hom(X,Y)=CN

0x : X — X**
Ixey = 0x ® 6y
0, =1d

ox+ = (6%) "

braided

cx.y: XY YR ex: X*OX 1

ix: 1o X®X*
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Fusion rules

In a fusion category, we have

» fusion rule: X QY = @N)%Y Z

> coefficients :Ng y, = dim Hom(X @ Y, Z)



[modular tensor category ]

[ ribbon fusion ]

fusion rule: X @ Y = ®N%, Z
coef ficients : N% = dim Hom(X ® Y, Z)

ribbon fusion

[Irr(C)| <
1 is simple

semisimple C -linear

X 2omX; Hom(X,Y)eCVN

Jox : X — X**
Ixgy = 0x ®Jdy
0, =1Id

ox- = (%)~

1

braided

ex: X*@X—1
ix: 1 X®X*

ex,y : XY SY®



S and T matrix

In a ribbon fusion category, let X; € lrr(C).

» T matrix
Ox = 1xdx : X = X, where ¢x : X** — X.
End(X;) =C
Ox. =0ildx., 0; € C
T = diag(6;)
» S matrix
f: X=X
C=End(l)>trf: 1—1
dim(X;) :=tr ldx,, D=3 dim(X;)?

Sij = tr(ex;, xrocxy, x;) € C



[modular tensor category ]

Det(S)# 0

QXZ’U/'X(SX:X;X fZXHX

Fnd(X) = C —{ ribbon fusion |——C=End()3tr f: 11
Ox =0;Idx, 0, € C dim(X) =tr Idx

T = diag(0;)

S,j_j = If’!'(sz7 X: o CX;*, xl) eC

fusion rule : X ® Y = ®N%Z,, Z
coef ficients : N4y = dim Hom(X @Y, Z)

ribbon fusion

[Irr(C)] < ¢
1 is simple

semlslmple C -linear

=@m X, Hom(X,Y)eCV

ox : X — X**
Oxgy = 0x @0y
(51 =1d

Sx- = (0%) "

braided

cx. v XY Y ® ex: X*@X—1

ix: 12 X®X*

C, @, a,1,r1)

monoidal



Examples of modular categories

» Pointed: C(A, @), finite abelian group A, non-deg. quadratic form @
on A.

» The Drinfeld center Z(C) of a spherical fusion category C.

Objects of Z(C) are (Z,), where Z is an object of C and ~ is half
braiding.

» From quantum groups:
— i/l /{Ann(Tr))

g~ Ugg ~ Rep(Ugg) ~ C(g,/)



SLy(Z) representation

Given a modular category with (unnormalized) modular data (S, T).

> S*=dim(C)?Id, (ST)®> = pT S?, where pt = 3", 0Fd?.

0 —1 1 1
> = = =
SLy(Z) = (s, t), where s (1 0 ) and t (O 1).

> 5% =1Id, (st)° = 5°.
» s+~ S, t— T gives a projective representation p¢ of SLy(Z).

» [Ng-Schauenburg '10]

If N =ord(T),
» pc factors through SLy(Z/NZ).

> Q(S) € Q(¢w), N =ord(T).



SLy(Z) representation (continued)

1 1
» s:=—————5 and t:=— T, where « is any third root of the

V/dim(C) Y
multiplicative central charge ¢ = p*(C)/+/dim(C).
» 5+ s, t— t gives a linear representation p of SLy(7Z).
» [Dong-Lin-Ng '15]
If n=ord(t),

» p factors through SLy(Z/nZ)
> im(p) C GLA(Q(Cn))



SLy(Z) representation (continued)

» p factors through SLy(Z/nZ).
» Chinese Reminder Theorem — SLo(Z/p*7Z).

» [Nobs 1976, Nobs and Wolfart 1976] Irreducible representations of
SL>(Z/p*Z) are classified using subrepresentations of Weil
representations.

» [Ng-Rowell-Wang-Wen '22] Reconstruction of modular data from
irreducible representations of SLy(Z/nZ).

Classification up to modular data, rank = 6.



Chern-Simons invariant

» X: a closed oriented 3-manifold
» p:mi(X) — SL(2,C)
> x,=Tr,:m(X) = C

» Chern-Simons invariant

1 2
CS(p) = = 2/Tr(dA /\Ap+3A NA, NA,) mod 1,

where A, € Q! (X; sl) connection 1-form with holonomy p.



Adjoint Reidemeister Torsion

=0—C, -+ — C —>0)is acyclic if H;(C) =
» Fix a basis ¢; of C;.
Choose a basis b; of Im(09;), b; U b;_1 is a basis of C;.
» Let D; be the transition matrix from b; L E;_l to ¢;.

» Torsion of C
Hdet ( 1)l+1

» p:m(X) — SL(2,C)
> C()~<)®adjpcc3 — ( N C,()?) ®adjp C3 g C,'_l()?) ®adjp C3 -

» Adjoint Reidemeister Torsion

Tor(p) =7 (C(;() ®adj, (C3)



Torus bundles over the circle

» Let M be a torus bundle over S! with the monodromy map

T2

( i Z ) € SL(2,Z), where |a+ d + 2| > 4.

» N:=la+d+2|>4 <« SOL geometry.

» Its fundamental group has the presentation,
T (M) = (x,y, h | x?y¢ = h~lxh,x"y¥ = h=lyh,xyx "1yt = 1)

» An example:
Consider M to be a torus bundle over St with < i 1 >

We will use this example as we go through the program.



Program: Simple object types

» R(X)={p:m(X)+— SL(2,C)} representation variety
> x(X)={x, | p € R(X)} character variety. Call p a preimage of x,

Definition
» A x € x(X) is non-Abelian, if at least one preimage p is non-Abelian,
i.e., it has non-Abelian image in SL(2, C).

» A non-Abelian y is adjoint-acyclic, if all of its non-Abelian preimages
p are adjoint-acyclic.

» Postulate 1: a simple object type is an adjoint-acyclic non-Abelian Y.

» Postulate 2: a label set L(X) is a finite set of simple object types with
a prechosen type xo such that

CS(x) — CS(x0) € Q.  Vx € L(X).

The tensor unit is xp.



Program: Simple object types (continued)

Example (Label set of M)
> 1 (M) = (x,y, h | x*yh~xh,xy = h~lyh,xy = yx)

» lrreducibles px, k

X — e® 0- — e’ O- h— .
G 2= Y 0 e 5 ) =1l

» Reducibles p4
1 1 u V4 0
(o1 oo 7)en (5 00).
with u = 51 ve =+ _1.

> L(M)={ps+,p—,p1,p2} po:=ps ldentifying p with x,
» CS={0,0,5,—1%} Tor = {5,5,2,2}

' A 4




Program: Simple object types (continued)

H! (X; Z,) = Hom (m1(X), Z>)
={o :m (M) = {£h} C SL(2,C)} central representations

b HU (X Z2) A RX) (00)() =o()p() = HY(X:Za) ~ x(X)
> s(X):= HY(X;Z) po C L(X)

» The label set needs to satisfy:

Z 1 _1 Z exp (—27i CS (pa)) _ |s(X)|
e l0X) 2 Tor (pa) e L) 2 Tor (pa) /2 Tor (po)

Example (Label set of M (continued))

The two conditions are satisfied

HY (M;Zo) =Za  py < p- s(X)={py,p-}




Program: Twists and dimensions
Postulate 3: the twist is

0, = e 2mi(CS(pa)=CS(po))

Postulate 4: the quantum dimension is

d; 1
D? = 2 Tor (po) < =

D?  2Tor (pa)

Example (Twists and dimensions for M)

> L(M) ={p+,p-,p1,p2} po:=p+
» CS={0,0,1,—3} Tor={5,52,2

> 0= {1,1,e_%,e%}

» D=+10 |d|={1,1,2,2}




Program: S-matrix

Definition
» A loop operator is a pair (a, R) where a is a conjugacy class of m1(X),
and R is an irrep of SL(2,C).
» The weight of p € R(X) w.r.t (a,R) is

Wo(a, R) = Trr(p(a))

For example,
Sym/ := (j + 1)-dim irrep, W, (a,Sym') = Tr(p(a)) = x,(a)

» Postulate 5: each type is associated with some loop operators,

pa — {(a5: RE) Y. guess-and-trial

Wﬁ(a H WP,B o Ra) = HTrR"“ (pﬂ (a3))  Pas pB < L(X)



Program: S-matrix (continued)

Postulate 6: the un-normalized S-matrix is given by,
- 3
Sup = Wa(@)Wo(8) & Wj(a) = 32
In particular, d, = Wp(«).
Example (S-matrix for M)
pr— (x,Sym®),  pe> (x 3%, Sym')  k=1,2
Wok) = Trgy s (0 (x3)) =2
Wi(k) = Trgym! (pj ( _3/‘)) — 2cos 4?"
1 1 2 2
~ 1 1 2 2 : _2mi  2mi
0= 2 2 4cos457r 4c05257r =gl e w6 )
2T 47
2 2 4cos5 4cos
which corresponds to a subcategory of C(sos, e_31_75i, 10).




Modular data from torus bundle over S?!

Theorem (Cui-Qiu-Wang)
Let M be the torus bundle over St, with the monodromy matrix

( i Z ) such that N =a+d+2 >4 is odd and (c, N) are coprime.
The modular data constructed from M matches that of C (sop, q,2N) .

Theorem (Cui-Gustafson-Qiu-Z)

For a general torus bundle over S* with SOL geometry, there exists a finite
abelian group G and a quadratic form q such that the corresponding
ribbon fusion category is the Zy-equivariantization of C(G, q).




(S, T) from Seifert fibered space

Theorem (Cui-Qiu-Wang)

Let M be a Seifert fibered space with three singular fibers.
The ribbon fusion category constructed from M is

B = (Ri_; TLI(A)) P (K31 TLI(AK)°)

» Conjecturally, the resulting category from a general M is modular iff
H' (M; Zy) = 0.



Future questions

» For hyperbolic 3-manifolds?

Conjecture: (W.-Yang '21)

Suppose for r sufficiently large, a hyperbolic cone metric on M with singular locus L and
cone angles 8" exists. We denote M with such a hyperbolic cone metric by M(").

As r varies over all positive odd integers, the relative Reshetikhin-Turaev invariants

1T mHO) () o i
RT,(M, L,m®") = c—So 2000 g (Vaum)ios(ui) (1 + O(l)),
VETw L) ([ome]) r

where C is a quantity of norm 1 independent of the geometric structure on M.

» Construction beyond modular data. E.g., F-matrices, R-matrices.

» Operations on MTCs <+ Constructions of 3-manifolds.



Thank you!



