5.5 Multiple Eigenvalue Solutions

In this section we discuss the situation when the characteristic equation
|A — M| =0
does not have n distinct roots, and thus has at least one repeated root.

An eigenvalue is of multiplicity k if it is a k-fold root of Eq. (1).

1. Complete Eigenvalues

e We call an eigenvalue of multiplicity kK complete if it has k linearly independent associated eigenvectors.

e [f every eigenvalue of the matrix A is complete, then - because eigenvectors associated with different

eigenvalues are linearly independent-it follows that A does have a complete set of n linearly independent

eigenvectors vy, v, ..., v, associated with the eigenvalues A1, Ao, ..., A,
(each repeated with its multiplicity).

e In this case a general solution of Eq. (1) is still given by the usual combination

x(t) = cyvieMt + cavaet + - v ettt

Example 1 (An example of a complete eigenvalue)

Find the general solution of the systems in the following problem.

2 00
x'=|-7 9 7|x
0 0 2

ANS: The characteristic equation of the coefficient matrix A is
2—A 0 0
|JA=XI|=| =7 9-2A\ 7 :(2—)\)‘
0 0 2—-A

Thus A = 2,2,9.

9—-2A 7
0 2—-A

e Case\; = 2.Wesolve (A — A\ I)v=0.

0 0 0] [a 0
That is, (A - /\1[)6 =|-7 77 bl =10
0 0 0] [c 0

= —a+b+c=0
o Ifc=0,—a+b=0.

=(2-0)*9-)) =



1

We cantakea = b = 1.Then vy = [1] is an eigenvector to A\; = 2.
0
o Ifb=0,then —a +c=0.
1
We cantake a = ¢ = 1. Then va = [0 is another eigenvector to \; = 2.
1

Note v, and vy are linearly independent.

e Case Ay = 9. We solve

a=0
=<a+c=0.
c=0
0
Letb=1.Thenvy = |1

0

Then the general solution is

70 07 [a 0
(A-9Dvs=|-7 0 7| |b| =0
0 0 -7/ [c 0

is an eigenvector corresponds to Ay = 9.

1 1 0
x(t) =ci [1|e* 4+ co |[0]e* +c5 |1]|et
0 1 0



2. Defective Eigenvalues .
(re. A hos lese Hoon & [ meeol

® An eigenvalue X of multiplicity k > 1 is called defective if it is not complete. Mol penple nt epz;m/ec_f,,n)
e |f the eigenvalues of the n X n matrix A are not all complete, then the eigenvalue method will produce
fewer than the needed n linearly independent solutions of the system x’ = Ax.
® An example of this is the following Example 2.
e The defective eigenvalue A\; = 5 in Example 2 has multiplicity k = 2, but it has only 1 associated
eigenvector.

The Case of Multiplicity k = 2

Remark: The method of finding the solutions is summarized in the Algorithm Defective Multiplicity 2
Eigenvalues. The following steps explain why this algorithm works.

® Let us consider the case k = 2, and suppose that we have found (as in Example 2) that there is only a
single eigenvector v associated with the defective eigenvalue A.

e Then at this point we have found only the single solution Xl(t) = vle)‘t ofx' = Ax.

Recall when solving az” + bz’ + cx = 0.
If ar? + br 4+ ¢ = 0 has repeated roots. Then two linearly independent solutions are e, te"
e By analogy with the case of a repeated characteristic root for a single linear differential equation, we
might hope to find a second solution of the form
X (t) = (vat)eM = voteM
e When we substitute x = voteM inx’ = Ax, we get the equation
voeM 4+ AvoteM = AvoteM

e But because the coefficients of both e** and te* must balance, it follows that ve = 0, and hence that
x2(t) = 0.

e This means that - contrary to our hope - the system x’ = Ax does not have a nontrivial solution of the
form we assumed.

e Let us extend our idea slightly and replace vyt with vt + vs.

e Thus we explore the possibility of a second solution of the form K7}é{t‘ A ?%d
. =
X (t) = (vit + vo)eM = viteM + voet

where v, and v, are nonzero constant vectors. <= V‘%A Y A
; . . +As@ = AVs
e When we substitute x = vite 4 voeM inx’ = Ax, we get the equation :

vieM + Avite + AvaeM = AviteM + Avyer S AT
Mo M <= A=AV,
e We equate coefficients of e and te™ here, and thereby obtain the two equations
_ _ a0 A
(A—A)v; =0| and | (A —A)vy=v; VA = Av.
that the vectors vy and v, must satisfy in order for
DS -~
Xo(t) = (vit + vo)eM = viteM + voet <> U\, X[) Y, =0

A-ADV, =V



to give a solution of x’ = Ax.

e Note that the first of these two equations merely confirms that v is an eigenvector of A associated with
the eigenvalue .

e Then the second equation says that the vector v satisfies
(A —AI)%vy = (A — AI) [(A — AI)vy] = (A — AI)v; = 0

e |t follows that, in order to solve the two equations simultaneously, it suffices to find a solution v3 of the
single equation (A — AI)%2vy = 0 such that the resulting vector vi = (A — AI)vy is nonzero.

Algorithm Defective Multiplicity 2 Eigenvalues
1. First find nonzero solution vy of the equation
(A —AI)%vy, =0 (4)
such that
(A = AI)vy = vy (5)
is nonzero, and therefore is an eigenvector v; associated with .
2. Then form the two independent solutions
x1(t) = vie (6)
and
Xo(t) = (vit + va)e (7)

of x’ = Ax corresponding to \.
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Example 2 (A with multiplicity 2, and A is defective )

Find the general solution of the system in the following problem. Use a computer system or graphing
calculator to construct a direction field and typical solution curves for the system.
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Example 3. (A with multiplicity 2, and X is defective )
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Exercise 4 Find the general solution of the system in the following problem.

0 1 2
x'=|[-5 -3 —-T7[x (10)
1 0 0

The solution can be found on page 341, Example 4.



