3.4 Mechanical Vibrations

Mass-spring-dashpot system

— il —

|
Equilibrium

position
® Restorative force Fis = —kx, where k > 0 is spring constant (Hooke's law).
x
e The dashpot provides force F'r = —cv = _CE’ where ¢ > 0 is damping constant.

e External force Fp = F(t).
e The total force acting of the mass is F' = Fg + Fr + F'g.

e Using Newton's law,

d%z
F=ma=m— =ma"
dt?

we have the following second-order linear differential equation
mz" + cx' + kx = F(t)

e |fc = 0, we call the motion undamped. If ¢ > 0, we call the motion damped.
e IfF(t) = 0, we call the motion free. If F'(t) # 0, we call the motion forced.

@2 An important note before we start analyzing the general cases:

Rather than memorizing the various formulas given in the discussion below, it is better to practice a
particular case to set up the differential equation and then solve it directly.




1. Free Undamped Motion (¢ = 0 and F'(t) = 0)

Our general differential equation takes the simpler form
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mac"—l—kac:O:>x”—|—< —) =0
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It is convenient to define

Then we can rewrite our equation in the form

" +wizr =0

Then the characteristic equation is

r* +wy; = 0= r* = —w; = r = Twyt (complex conjugate)
The general solution of this equation is

z(t) = Acoswyt + Bsinwgt
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® Question 2: What is the angle a?
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may be nejm‘we : 0
1B
x . ~
? A - B >0
e Thus i \\N
tan"1(B/A) if A > 0, B > 0( first quadrant ) /7 A<o
a=<{rm+tan 1(B/A) if A < 0(second or third quadrant ) (1)
2w +tan"'(B/A) if A > 0, B < 0 (fourth quadrant)
N
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where tan (E) is the angle in (—5, 5) given by a calculator or computer.
>

O}.\ A
e So we have L@N

z(t) = C cos (wot — a)

where w, C' and « are obtained as above.

e We call such motion simple harmonic motion. A typical graph of such motion is as
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e To summarize, it has
Name Symbol Quick note

C = v A% + B?, where z(t) = A coswyt + Bsinwyt is the solution for the

Amplitude C
P equationz” + wiz = 0.
Circular k
wo wo = —_
frequency m
Phase angle o Obtained by formula (1) above
27
Period T = o Time required for the system to complete one full oscillation
0
1 wo
V= — = —
Frequency T 2w It measures the number of complete cycles per second.
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Example 1 ™M X g,;(’Jr//;oz(:%

e A body with mass m = 0.5 kilogram (kg) is attached to the end of a spring that is stretched 2 meters (m)
by a force of 100 newtons (N).

e |tis setin motion with initial position g = 1 (m) and initial velocity v = —5 (m/s). (Note that these initial
conditions indicate that the body is displaced to the right and is moving to the left at time ¢ = 0.)

e Find the position function of the body in the form C cos (wot — ) as well as the amplitude, frequency
and period of its motion.
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m+tant(B/A) if A < 0(second or third quadrant )

27 +tan 1(B/A) if A >0, B < 0 (fourth quadrant)
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2. Free Damped Motion (c > 0 and F'(t) = 0)

In this case, we consider

mx” +cx' +kxr=0

c
Letwy = v/k/mand p = — > 0. We have

2m

The characteristic equation

has roots

Note

We have the following three cases.

z" 4 2pz’ + wilr =0

r2 4 2pr + wi =0

ry, T2 = _pj: \/pz_w(z)
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Case 1. Overdamped (c? > 4km, two distinct real roots)
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FIGURE 3.4.7. Overdamped
motion: x(¢) = c1e”1? + c2e”2! with
r1 < 0and rp < 0. Solution curves are
graphed with the same initial position
xo and different initial velocities.

Analysis

Eq(3) gives two distinct real roots 71 and r2( both < 0). The

position function

z(t) = cie

Note

(The object will go to the equilibrum position without any

ocillations.)

lim z(t) =0

(2)



Case 2. Critically damped (c? = 4km, repeated real roots)

Figure
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FIGURE 3.4.8. Critically damped
motion: x(¢) = (c1 + c2t)e™ P! with
p > 0. Solution curves are graphed
with the same initial position xo and
different initial velocities.

Analysis

Eq(3) has roots r; = ry = —p. The general solutfon for the
position function.

z(t) = e # (c1 + eot)

and

lim z(t) =0

t—o0

The resistance of the dashpot is just enough to damp out any
oscillations.

Case 3. Underdamped (c? < 4km, two complex roots)
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FIGURE 3.4.9. Underdamped
oscillations:
x(t) = Ce Pl cos(wit — ).

Analysis

Eq(3) has roots r12 = —p £ 14/ we? — p? = —p + wit,

_ 2 _ 2
where wy = 4/wg —p

The general solution for the position function
z(t) = e P (Acoswyt + Bsinw;t)
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Example 2 Suppose that the mass in a mass-spring-dashpot system with m = 6,c = 7, and k = 2 is setin
motion with 2(0) = 0 and z(0)" = 2.

(a) Find the position function z(t).

(b) Find how far the mass moves to the right before starting back toward the origin.
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Example 3 In the following problems (a) and (b), a mass m is attached to both a spring (with given spring
constant k) and a dash- pot (with given damping constant c). The mass is set in motion with initial position x

and initial velocity vg.

(1) Find the position function z(t) and determine whether the motion is overdamped, critically damped, or
underdamped. If it is underdamped, write the position function in the form a:(t) = Cle_pt Ccos (wlt — al),

(2) Find the undamped position function u(t) = C cos (wot — ) that would result if the mass on the spring
were set in motion with the same initial position and velocity, but with the dashpot disconnected (so ¢ = 0).

(3) Construct a figure that illustrates the effect of damping by comparing the graphs of () and u(t).
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