
3.4 Mechanical Vibrations  

Mass-spring-dashpot system

Restorative force , where  is spring constant (Hooke's law).

The dashpot provides force , where  is damping constant.

External force .

The total force acting of the mass is .

Using Newton's law, 

                

we have the following second-order linear differential equation

If , we call the motion undamped.  If , we call the motion damped.
If , we call the motion free. If , we call the motion forced.

 

 

!

 An important note before we start analyzing the general cases: 

 Rather than memorizing the various formulas given in the discussion below, it is better to practice a 
particular case to set up the differential equation and then solve it directly. 

 

 

 

 



1. Free Undamped Motion  (  and )

Our general differential equation takes the simpler form

It is convenient to define

Then we can rewrite our equation in the form

                    

Then the characteristic  equation is

          (complex conjugate)

The general solution of this equation is

             

 

 

 

 

 

 

Question 1. What is the values of ?

 

 

Question 2: What is the angle ?

 

 

 

 

 

 

We write ✗ It ) = C (¥ coswott sinwot )^
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Thus

where  is the angle in  given by a calculator or computer.

 

So we have 

                 

where ,   and  are obtained as above.

We call such motion simple harmonic motion. A typical graph of such motion is as 

Name Symbol Quick note

Amplitude
, where  is the solution for the 

equation .

Circular 
frequency

Phase angle Obtained by formula (1) above

Period Time required for the system to complete one full oscillation

Frequency
 

(In Hz)
It measures the number of complete cycles per second.

To summarize , it has
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Example 1

A body with mass  kilogram (kg) is attached to the end of a spring that is stretched 2 meters (m) 
by a force of 100 newtons (N). 
It is set in motion with initial position  (m) and initial velocity  (m/s). (Note that these initial 
conditions indicate that the body is displaced to the right and is moving to the left at time .)
Find the position function of the body in the form  as well as the amplitude, frequency 
and period of  its motion.
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ANS : Since Fs = 100 = biz ⇒ 12=50 Nlm

Then we have

0.5 ×
"

-150 ✗ = 0

⇒ ✗
"

+ too ✗ = 0 (✗" + Wix __ 0 )

From our previous discussion
.
We have
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.
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'
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.
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5-
We can also trsefmnla 1. with A- 1>0

,
13=-1-2 - o

2=21-1-1 tan
- '

¥-
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- I
- I
1

= 21-1-1 tan-11- E)

I 5 -8195rad

Thus
✗ It )= BE cos ( lot - 5.8195 )



Figure Analysis

 

2. Free Damped Motion (  and )

In this case, we consider 

Let  and . We have 

The characteristic equation 

has roots 

Note 

 

We have the following three cases.

Case 1. Overdamped ( , two distinct real roots) 
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Case 2. Critically damped ( , repeated real roots)  

                             

Case 3. Underdamped ( ,  two complex roots)
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Example 2 Suppose that the mass in a mass–spring–dashpot system with  and  is set in 
motion with  and .

(a) Find the position function .

(b) Find how far the mass moves to the right before starting back toward the origin.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

 

ANS : We have bx" -17×1+25-0
,
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,
X'101=2
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Example 3 In the following problems (a) and (b), a mass m is attached to both a spring (with given spring 
constant k) and a dash- pot (with given damping constant ). The mass is set in motion with initial position  
and initial velocity . 

(1) Find the position function  and determine whether the motion is overdamped, critically damped, or 
underdamped.  If it is underdamped, write the position function in the form . 

(2) Find the undamped position function  that would result if the mass on the spring 
were set in motion with the same initial position and velocity, but with the dashpot disconnected (so ). 

(3) Construct a figure that illustrates the effect of damping by comparing the graphs of  and .

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANS : in with damping .
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(d) Without damping ( c- 0)

we have ×
"

-13×-0
.
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(b) 
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↳ without damping cc=o ) .

We have
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