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1. Linearly Independent Solutions
1.1. Definition of linearly dependent/independent

The n functions f1, fo,- - -, f, are said to be linearly dependent on the interval I if there exist constants
ci,C2, "+, Cpy notall zero such that

cifitcfot - -+enfn=0

forallzin I.

The n functions f1, fo, - - -, f, are said to be linearly independent on the interval I if they are not linearly
dependent. Equivalently, they are linearly independent on I if

cafi+cafot---+enfn=0

holds on I only when



Example 1 Show directly that the given functions are linearly dependent on the real line.
M f(z) =3, g(z)=2cos’z, h(z)=_cos2z

@) f(z) =5, g(z)=2—3z2, h(z)= 10+ 15z (exercise)
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1.2. Wronskian of n functions

Suppose that the n functions f1, f2,- - -, f, are alln — 1 times differentiable. Then their Wronskian is the
n X n determinant

fi far 0 [a
fi fo o fn
W(m):W(fl’fZ,"',fn): : : .
-1 -1 -1
® The Wronskian of n linearly dependent functions fy, fo, - - -, fy is identically zero.

Idea of the proof:
o We show for the case n = 2. The case for general n is similar.

o If f; and f, are linearly dependent, then c¢1 f1 + caf2 = 0 (%) has nontrivial solutions for ¢; and
¢ (c1 and ¢4 are not all zeros).

o We also have ¢; f{ + cafy = 0 from (x).

o Thus we have the linear system of equations

cifi+cafa=0
cifi +c2fy =0

o By atheorem in linear algebra, the above system of equations has nontrivial solutions if and only if

fiof|_
11
e So to show that the functions f1, fo,- - -, f, are linearly independent on the interval I, it suffices to

show that their Wronskian is nonzero at just one point of [.



Example 2 Use the Wronskian to prove that the given functions are linearly independent on the indicated
interval.

f(z) =€®, g(z) =cosz, h(z)=sinz; therealline
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2. nth-order linear differential equation
The general nth-order linear differential equation is of the form
Py(z)y™ + Pi(z)y™ M + - + Py 1(2)y + Pula)y = F(x).
We assume that the coefficient functions P;(x) and F'(x) are continuous on some open interval I.
2.1 homogeneous linear equation

Similar to Section 3.1, we consider the homogeneous linear equation

y™ + p1(2)y" Y + -+ pui(2)y + pa(z)y =0 (1)

THEOREM 1 Principle of Superposition for Homogeneous Equations

Let y1, Y2, - - - Yn be n solutions of the homogeneous linear equation (1) on the interval I. If ¢1,¢c2,- -, ¢, are
constants, then the linear combination

Yy=ciyis +cy2+ -+ culyn

is also a solution of Eq. (1) on 1.

THEOREM 4 General Solutions of Homogeneous Equations
Let y1, Y2, - - - Yy, be n linearly independent solutions of the homogeneous equation
y™ +p1(@)y" Y + -+ pa1(@)y + pala)y =0 (1)

on an open interval | where the p; are continuous. If Y is any solution of Eq. (1), then there exist numbers
C1,Co,+*+,Cpy such that

Y(z) = c1yi(@) + caya() + -+ + cayn(x)

forall zin 1.




Example 3 In the following question, a third-order homogeneous linear equation and three linearly
independent solutions are given. Find a particular solution satisfying the given initial conditions.
23y + 622" + dzy — 4y = 0;

y(1) =19 (1) =5, 3"(1)

Y1 = T,

= 11,

y2 =z 2, y3 =z ’Inz
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The method of reduction of order
Suppose that one solution y1 (z) of the homogeneous second-order linear differential equation
y' +p()y +q(x)y =0 (3)

is known (on an interval I where p and q are continuous functions). The method of reduction of order
consists of substituting y2(x) = v(z)y1(x) in (3) and determine the function v(x) so that y2(x) is a second
linearly independent solution of (5).

After substituting y2(z) = v(x)y1(x) in Eq. (3), use the fact that y1 () is a solution. We can deduce that
y1v" + (24 + py1)v’' =0

We can solve this for v to find the solution y2(z) of equation (3).

Example 4 Consider the equation

z2y" — 5y’ + 9y =0 (z > 0),

Notice that y1 (x) = z3 is a solution. Subsitute y = vz3 and deduce that zv” + v’ = 0. Solve this equation

and obtain the second solution y»(z) = z3Inz.
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2.2. Nonhomogeneous Equations
Now we consider the nonhomogeneous nth-order linear differential equation

v 4+ p1(@)y" ) + -+ poa(@)y + pa(@)y = f(2) (4)

with associated homogeneous equation

v 4 p1(@)y " 4+ poa(@)y + pal@)y =0 (5)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y,, be a particular solution of the nonhomogeneous equation in (4) on an open interval I where the
functions p; and f are continuous. Let y1, ys, - - - y,, be linearly independent solutions of the associated
homogeneous equation in (5). If Y is any solution whatsoever of Eq. (4) on |, then there exist numbers
C1,C2,**,Cp such that

Y(ZB) = Clyl(x) + C2y2(x) + o+ CplYn + yp(w) =Y+ Yp

forall zin 1.

Exercise 5 Notice that y,, = 3z is a particular solution of the equation
Yy 4+ 4y = 122

and that y.(x) = ¢ cos 2z + ¢ sin 2z is its complementary solution. Find a solution of the given equation
that satisfies the initial conditions y(0) = 5,¢'(0) = 7.
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