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1. Definition of second-order linear equations

A linear second-order equation can be written in the form

A(z)y" + B(z)y' + C(x)y = F(x)

We assume that A(z), B(x), C(x) and F'(z) are continuous functions on some open interval I.

For example,
ey’ + (cosz)y + (1 ++z)y=tan 'z

is linear because the dependent variable y and its derivatives y' and 4" appear linearly.

The equations

!

y'=yy and y' +2(y)°+4y°=0

are not linear because products and powers of y or its derivatives appear.



2. Homogeneous Second-Order Linear Equations

If the function F'(z) = 0 on the right-hand side of Eq. (1), then we call Eq. (1) a homogeneous linear
equation; otherwise, it is nonhomogeneous. In general, the homogeneous linear equation associated with Eq.

(1)is
A(@)y" + B(z)y' + C(z)y =0 (2)
For example, the second-order equation
22%y" + 2zy' 4+ 3y = sinx
is nonhomogeneous; its associated homogeneous equation is
22%y" + 2z + 3y =0
Consider
A(z)y" + B(z)y' + C(z)y = F(x)

Assume that A(z) # 0 at each point of the open interval I, we can divide each term in Eq. (1) by A(x) and
write it in the form

y' +p(@)y + q(z)y = f(z)
We will discuss first the associated homogeneous equation

y" +p(z)y +q(z)y =10 (3)



Y +p(x)y +q(z)y=0 (3)

Theorem 1 Principle of Superposition for Homogeneous Equations

Let y; and Y3 be two solutions of the homogeneous linear equation in Eq. (3) on the interval I. If ¢c;and

co are constants, then the linear combination p ,
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Application of Theorem 1. In Examples 1 and Exercise 2, a homogeneous second-order linear differential

equation, two functions y; and y2, and a pair of initial conditions are given. First verify that y; and y are
solutions of the differential equation. Then find a particular solution of the form y = c1y;1 + c2y» that satisfies
the given initial conditions.

Example 1

Yy -3y +2y=0; y1=¢€% y2=¢€ y0)=1, y(0)=T1.
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Theorem 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, g, and f are continuous on the open interval I containing the point a. Then,
given any two numbers by and by, the equation

y' +p(2)y +9(z)y = f(z)
has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

y(a) = by, y'(a) = by.

3. Linear Independence of Two Functions

Two functions defined on an open interval I are said to be linearly independent on I if neither is a constant
multiple of the other. Two functions are said to be linearly dependent on an open interval if one of them is a

constant multiple of the other. g':x ' yx:SK ’ 44' ounol /yL ore l«'ne&v/g Dtlf&r\ clen

For example, the/following pairs of functions are linearly independent on the entire real line GMce

/\ sinx and cos ’?,‘«S'ﬁl
) / K > e” and ze”

W z+ land 23

The functions f(x) = sin 2z and g(z) = sin x cos z are linearly dependent.

3‘“) =NNK cos < = ).2 (x)

We can compute the Wronskian of two functions to determine if they are linearly independent (or
dependent).

Given two functions f and g, the Wronskian of f and gis the determinant

f g
W(f.9) =1, |=1fd—fg
g
For example,
cosz sinz
W(cos z,sinz) = : =cos’z +sin’z =1
—sinx cosx
and
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1 5 =bx — bxr =
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Theorem 3 Wronskians of Solutions
Suppose that yjand ys are two solutions of the homogeneous second-order linear equation Eq. (3)
y' +p(@)y +q(z)y =0

on an open interval I on which p and q are continuous.
(a) If y;and yoare linearly dependent, then W (y1,y2) = 0on I.
(b) If yand ys are linearly independent, then W (y1, y2) # 0 at each point of I.

Theorem 4 General Solutions of Homogeneous Equations

Let y; and y, be two linearly independent solutions of the homogeneous equation Eq. (3)

Y +p(2)y +q(z)y=0

with p and ¢ continuous on the open interval I. If Y is any solution whatsoever of Eq. (3) on I, then
there exist numbers ¢y and ¢y such that

Y(z) = c1y1(z) + caya(z)

forall z in 1.




4. Linear Second-Order Equations with Constant Coefficients
Let's discuss how to solve the homogeneous second-order linear differential equation
ay" +by +cy=0 (4)
with constant coefficients a, b, and c.
Consider a function of the form y = e"*. Observe that
y = (e™) =re™, and y" = (e™)" = r2e™.

This suggest that we can try to find r such that when we substitute y, ¥’ and y” into Eq. (4), we will get zero on
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In general, we subsititute y = e in Eq. (4). Then
ar?e™ 4 bre™ 4 ce™ =0

Since e"” is never zero. We conclude y = e"* will satisfy the differential equation in Eq. (4) precisely when r is
a root of the algebraic equation

ar’ +br+c=0 (5)
This quadratic equation is called the characteristic equation of the homogeneous linear differential equation
ay”" +by +cy=0

If Eq. (5) has distinct (unequal) roots 71 and 73, then the corresponding solutions y1 () = e™* and
ya(x) = e™" of Eq. (5). are linearly independent. Why?
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Theorem 5 Distinct Real Roots

If the roots 7; and 74 of the characteristic equation in Eq. (5) are real and distinct, then

T

y(z) = cr1e”” + coe™”

is a general solution of Eq. (4).

Question: What if we have r; = rs for the characeristic equation?
Example 4

Find general solutions of the given differential equations.
y' +4y +4y =10 @
ANS - The Corres'?anolc‘V\J ohar . 2%7\ vs
Y4 4r +4 =0
2 (r+2)"'=0 2D rn=V,2-2
VX TaX -2X
So g,aef = ¢ =2 s oo solvdion 4o
How olo we ‘["v\d onother  Golufromw ﬁ, such  Fhat y ZL\I}
ove. /;‘,.ea.yhj 1‘)«0%’7(%0&141‘?

Lotts  check if .= Ke'“éxg.) works



-2X

/g;f: @e'”)' = 7((@.2‘)/*' ()()’6% = ~)‘.xe,~2ﬁ+ 2

/ -I2%K _ -2X A% ~)X
Y. =20 4 4xe’” —2e7 = -4’ texe”
Y.t 43;’* .2 407 4x e 4 (2xePHET) F dx o™

=0
2K

So y}:xe 'S o soludiom . And «g,:eqx o of y;:xéz"

ore  [imeay lg n {zena&m‘_

BJ TAW\ 4 ?(X):&y(’f (:1272_ = y()(): (Cl‘/’ﬁx) QPM
s o }@neml soldiom

In general, we have the following theorem if 71 = 7ra.

Theorem 6 Repeated Roots

If the characteristic equation in Eq. (5) has equal (necessarily real) roots 71 = T2, then,

T

y(x) = (c1 + cax)e

is a general solution of Eq. (5).

Example 5

Find general solutions of the given differential equations.

M9y —6y +y=0
(2) 2y" + 3y’ = 0 (exercise)
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Example 6. The equation

y(x) = ¢ + cpe 1"
gives a general solution y(z) of a homogeneous second-order differential equation ay” + by’ + cy = 0 with
constant coefficients. Find such an equation. ' v,
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5. Euler Equation

A second-order Euler equation is one of the form

az’y’ +bzy +cy=0 (8)

where a, b, ¢ are constants.

Example 7. Make the substitution v = In x of the following question to find general solutions (for z > 0) of
the Euler equation.

2y + 2wy’ — 12y =0
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