1.5 Linear First-Order Equations

An example

Example 1 Find a general solution to the differential equation

$$rac{dy}{dx} = 2xy \quad (y > 0)$$
 (1)

ANS: Method 1 Notice that this is a separable diff eqn. S. $\int \frac{dy}{y} = \int 2x \, dx$ $\Rightarrow \ln y = x^2 + C$

Method 2 Rother than dividing both sides by y, we can
multiply both sides of (1) by
$$\frac{1}{y}$$
.
 $\frac{1}{y} \frac{dy}{dx} = 2x$ $D_x(\ln y) = \frac{1}{y} \frac{dy}{dx}$ (chain rule)
We can recognize each side of the eqn as a derivative. i.e.

$$D_{x}(lny) = D_{x}(x^{2})$$

Then integrating both sides gives us
$$lny = x^2 + c$$

In general, an integrating factor for a diff. eqn. is a function

$$p(x, y)$$
 with the property that multiplying each side of
the eqn by $p(x, y)$ allows each side to be recognizable as
derivative. For example, $p(x, y) = \frac{1}{y}$ is an integrating
factor for this example.

Linear First-order Equations

A linear first-order equation is a differential equation of the form

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{2}$$

where the coefficient functions P(x) and Q(x) are continuous on some interval on the *x*-axis. Rmk: No constant of the integration is

• This equation can always be solved using the integrating factor

• This equation can always be solved using the integrating factor

$$\rho(x) = e^{\int P(x)dx} \qquad neecked when finding the integrating
factor $\rho(x) = e^{\int P(x)dx} \qquad (3)$

$$\int \rho(x) dx \quad p(x) = e^{\int P(x)dx} + c \quad leads to$$

$$e^{\int P(x)dx} \frac{dy}{dx} + P(x)e^{\int P(x)dx} y = Q(x)e^{\int P(x)dx} \qquad \rho(x) = e^{\int P(x)dx} + c \quad leads to$$

$$e^{\int P(x)dx} \frac{dy}{dx} + P(x)e^{\int P(x)dx} y = Q(x)e^{\int P(x)dx} \qquad \rho(x) = e^{\int P(x)dx} = e^{c} \cdot e^{\int P(x)dx}$$

$$f(x) = e^{\int P(x)dx} \qquad \rho(x) = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} \qquad \rho(x) = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$

$$f(x) = e^{\int P(x)dx} = e^{\int P(x)dx} + c \quad leads to$$$$

• So we can rewrite our equation as

$$D_x \left[y(x) \cdot e^{\int P(x) dx} \right] = Q(x) e^{\int P(x) dx}$$
(6)

• Integrating both sides gives

$$y(x)e^{\int P(x)dx} = \int \left(Q(x)e^{\int P(x)dx}\right)dx + C \tag{7}$$

• Finally, solving for y(x) gives

$$y(x) = e^{-\int P(x)dx} \left[\int \left(Q(x)e^{\int P(x)dx} \right) dx + C \right]$$
(8)

• Note: This formula is not to be memorized, but rather illustrates a general method that can be applied in specific cases.

We summarize the steps of the method as follows:

Method of Solution of Linear First-Order Equations

$$\frac{dy}{dx} + P(x)y = Q(x)$$
 we have the eqn in (9)
this form. See example 2 below

Rmk: We need to make sure

Compute Step 1. the integrating factor $ho(x)=e^{\int P(x)dx}$

Step 2. Multiply both sides of the differential equation by $\rho(x)$.

Step 3. Next, recognize the left-hand side of the resulting equation as the derivative of a product:

$$D_x[
ho(x)y(x)] =
ho(x)Q(x)$$
 (10)

Step 4. Finally, integrate this equation,

$$\rho(x)y(x) = \int \rho(x)Q(x)dx + C$$
(11)

then solve for y(x) to obtain the general solution of the original differential equation.

Example 2 Find a general solution to the differential equation

$$xy' = 3y + x^4 \cos x, \quad y(2\pi) = 0 \tag{12}$$

ANS: We first write (12) in the form of $\frac{dy}{dx} + p(x) y = Q(x)$. If $x \neq 0$, we can rewrite (12) as $\frac{dy}{dx} - \frac{3}{x} y = \frac{x^3 \cos x}{3 \cos x}$ (3) Step 1. An integrating factor $p(x) = e^{\int P(x) dx} = e^{\int -\frac{3}{x} dx} = e^{-3h(x)}$ $= |x|^{-3}$. If x = 0, $p(x) = x^{-3}$. If x = -3. $p(x) = -x^{-3}$ Step 2. Multiply both sides by $p(x) = x^{-3}$ $x^{-3} \frac{dy}{dx} - 3 x^{-4} y = \cos x$ Step 3. Note 2HS = $D_x (x^{-3} y) (= D_x (p(x) y(x)))$ Step 4. Integrate both sides in terms of x. $x^{-3} y = \int \cos x dx + c = \sin x + c$ $\Rightarrow y = x^3 \sinh x + x^3 \cdot c$

As
$$y(2\pi) = 0$$
, $(2\pi)^3 \cdot \pi 2\pi^0 + (2\pi)^3 \cdot C = 0 \Rightarrow C = 0$
 $y = \chi^3 \pi 2 \pi \chi$

Example 3 Solve the following differential equation by regarding y as the independent variable rather than x

$$(1 - 4xy^{2})\frac{dy}{dx} = y^{3} \Rightarrow y^{3} dx = (1 + 4xy^{3}) dy \quad (13)$$
ANS: Regarding y as the independent variable, we write the eqn as
$$\frac{dx}{dy} = \frac{1}{y^{3}}(1 - 4xy^{2}) = \frac{1}{y^{3}} - 4\frac{x}{y^{3}}$$

$$\Rightarrow \frac{dx}{dy} + \frac{y}{y^{3}} x = \frac{y^{3}}{y^{3}} 0 \begin{pmatrix} 1h_{15} & 1s & a & 1h_{16}a & 1 \\ y & 1s & 1s & a & 1h_{16}a & 1 \\ y & 1s & 1h_{16}a & 1h_{16}a & 1h_{16}a \end{pmatrix}$$
Slep 1. An integrating factor $p(y) = e^{\int p(y)dy} = e^{\int y dy} = e^{\int y dy} = e^{\int y dy} = e^{\int y dy} = y^{4}$
Slep 2. Multiply $p(y)$ on both sides of 0.

$$\frac{dx}{dy} \cdot y^{4} + 4xy^{3} = y$$
Slep 3. Note that LHS = Dy $(x \cdot y^{4}) (z Dy (x \cdot p(y)))$
Step 4. So we integrate both sides in terms of y.

$$x \cdot y^{4} = \int y dy = \frac{1}{2}y^{-2} + C \cdot y^{-4}$$

An Application of Linear First-Order Equations: Mixture Problems

- A tank containing a solution-a mixture of solute and solvent-has both inflow and outflow.
- Our goal is to find the amount x(t) of solute at time t, given the initial amount x_0 .
- Suppose that solution with a concentration of c_i grams of solute per liter of solution flows into the tank at the constant rate of r_i liters per second, and that the (mixed) solution in the tank flows out at the rate of r_o liters per second.

Analysis: Set up a differential equation for \boldsymbol{x}

- We want to estimate the change Δx in x during the brief time interval $[t, t + \Delta t]$
- The amount of solute that flows into the tank during Δt seconds is $\underline{\gamma}$, \underline{c} ; $\underline{\Delta t}$ grams.
- The amount that flows out of the tank is more complex because it depends upon the concertaion $c_o(t) = \frac{\chi(t)}{\sqrt{tt}}$ of solute in the solution at time t
- So the change Δx in the amount of solute is:

$$\Delta x = \{\text{grams input}\} - \{\text{grams output}\} \approx \underline{\text{rici}} - \text{rocost}$$

• Dividing by Δt , gives

$$rac{\Delta x}{\Delta t} \approx \underline{\hat{\Gamma_i \Gamma_i} - \hat{\Gamma_o} C_o}$$

• Let $\Delta t
ightarrow 0$,

$$\frac{dx}{dt} = \underline{\gamma_i c_i} - \gamma_o c_o$$

- Note r_i , c_i , and r_o are constant. But $c_o(t) = \underbrace{\chi(t)}_{\chi(t)}$.
- If $V_0 = V(0)$, then $V(t) = V_0 + (\gamma_i \gamma_b) t$

• So
$$c_o(t)$$
 is a constant when $\gamma_{\overline{i}} = \gamma_{\overline{i}}$

Therefore,

$$\frac{dx}{dt} = r_i c_i - r_o \frac{x(t)}{V(t)}, \text{ where } V(t) = V_0 + (r_i - r_o)t$$
(14)

Example 4

$\chi(0) = 0$

A tank initially contains 240 gal of pure water. Brine containing 1/4lb of salt per gallon enters the tank at 2gal/min, and the (perfectly mixed) solution leaves the tank at 4gal/min; thus the tank is empty after exactly 2 h.

(a) Find the amount of salt in the tank after t minutes. \checkmark (t)

(b) What is the maximum amount of salt ever in the tank? χ_{max}

ANS:
$$V(0) = V_0 = 240$$
 gal.
 $Y_{i} = 2 \text{ gal}/\text{min}$, $C_i = \frac{1}{4} \frac{16}{9^{-1}}$
 $Y_0 = 4 \text{ gal}/\text{min}$, $C_0 = \frac{X(U)}{V(U)}$, where $V(U) = V_0 + (Y_i - Y_0)U$
 $= 240 - 24$
We have
 $\frac{dx}{dt} = Y_i C_i - Y_0 C_0$, where $C_0 = \frac{X(U)}{V(U)}$
 $\Rightarrow \frac{dx}{dt} = 2 \cdot \frac{1}{4} - 4 \cdot \frac{X(U)}{240 - 14}$
 $\Rightarrow \frac{dx}{dt} + \frac{2}{120 - 1} \frac{P(U)}{X(U)} = \frac{1}{2}$ (2(1))
Step 1. An integrating factor $P(U) = Q^{\int_{120-1}^{20-1} dU} = Q^{-2\ln(120-1)} = \frac{1}{(120-1)^2}$
Step 2. Multiply $P(U)$ on both sides of O , we have
 $\frac{1}{(120-1)^2} - \frac{dx}{d(1)} + \frac{2}{(120-1)^3} \times = \frac{1}{2} \cdot \frac{1}{(120-1)^4}$ (3)
Step 3. Note $LHS = D_U (P(U) - X(U)) = D_U (\frac{1}{(120-1)^2} - X(U))$
Step 4. Integrate both sides of O , we have
 $\frac{1}{(120-1)^2} - X(U) = \int_{12}^{12} \cdot \frac{1}{(120-1)^2} dU$.
 $= \int_{12}^{12} (\mu - 1)^{-1} dU$

$$= -\int \frac{1}{2} (120 - t)^{-2} d(120 - t) \xrightarrow{\text{Also we can}} \frac{1}{0} = -\frac{1}{2} \cdot \frac{1}{1-2} \cdot (120 - t)^{-1} + C$$

$$= -\frac{1}{2} \cdot \frac{1}{1-2} \cdot (120 - t)^{-1} + C$$

$$\Rightarrow \frac{1}{(120 - t)^{2}} \times (t) = \frac{1}{2} \cdot \frac{1}{120 - t} + C$$
Since $K(0) = 0$, $\frac{1}{120^{2}} \cdot 0 = \frac{1}{2} \cdot \frac{1}{120 - 0} + C$

$$\Rightarrow C = -\frac{1}{240}$$
Thus $\frac{1}{(120 - t)^{2}} \times (t) = \frac{1}{2} \cdot \frac{1}{120 - t} - \frac{1}{240}$

$$\Rightarrow X(t) = \frac{1}{2} \cdot (120 - t) - \frac{1}{240} \cdot (120 - t)^{2}$$

$$= -\frac{1}{240} t (t - 120)(120 + t - 120)$$

$$X(t) = -\frac{1}{240} t (t - 120)$$

$$x'(t) = -\frac{1}{120}t + \frac{1}{2} = 0 = -\frac{1}{120}t + \frac{1}{2} = 0$$

Example 5 A 120-gallon (gal) tank initially contains 90lb of salt dissolved in 90 gal of water. Brine containing 2lb/gal of salt flows into the tank at the rate of 4gal/min, and the well-stirred mixture flows out of the tank at the rate of 3 gal/min.

How much salt does the tank contain when it is full?

ANS: Let XH, be the amount of salt at time t. $C_i = 2 \quad lb/gal$ $\gamma_i = 4 \quad gal/min$ Vo=V(0) = 90 gal $V(t) = V_0 + (r_i - r_o) t$ Vo = 3gal/min = 90 + 7 $C_{o} = \frac{X(t)}{V(t)} = \frac{X(t)}{90+1}$ X(0) = 90 Lb dx = ViCi - VoCo =) $\frac{dx}{dt} = 4 \cdot 2 - 3 \cdot \frac{x(t)}{90 + \tau}$ $\Rightarrow \frac{dx}{dt} + \frac{3}{90+t} \times (t) = 8$ D · An integrating factor $f(t) = e^{\int \frac{3}{40+t} dt} = e^{\int \ln(90+t)} = (90+t)^3$ Multiply both sides of (D by pct) $(90+t)^{3} \frac{dx}{dt} + 3 \cdot (90+t)^{2} \times = 8 \cdot (90+t)^{3}$ (2) $LHS = D_{t}(p(t) \times (t)) = D_{t}((90+t)^{3} \times (t))$

Integrate both sides of (2)

$$(90+t)^{3} \cdot x(t) = \int 8 \cdot (90tt)^{3} dt = 2 \cdot (90+t)^{4} + C$$

 $\Rightarrow (90+t)^{3} \cdot x(t) = 2 \cdot (90+t)^{4} + C$
Since $x(0) = 90$, we have
 $90^{3} \cdot 90 = 2 \cdot 90^{4} + C$
 $\Rightarrow C = -90^{4}$
So $x(t) = 2 \cdot (90+t) - \frac{90^{4}}{(90+t)^{3}}$
The tank is $\int u || when$
 $V|t| = 90 + t = 120$
 $\Rightarrow t = 30 \min$
 $x(30) = 2 \cdot (90+30) - \frac{90^{4}}{(90+30)^{3}}$
 $\approx 202 \text{ Lb}$