1.4 Separable Equations and Applications

Recall in Section 1.2, we solved questions like

dy
p (z) (1)

The idea is integrating both sides. Can we apply the same idea for the following question?
dx
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General Separable Equations

d
In general, the first-order differential equation LA f(z,y)is separable if f(x,y) can be written as the

dx

product of a function of  and a function of y:

Y~ fw9) = o()H) )
o Ifk(y) # 0, then we can write
% — g(a)da (3)

e To solve the differential equation we simply integrate both sides:
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e Note we also need to check if k(y) = 0 gives us a solution.

Implicit, General, and Singular Solutions

e General solution: A solution of a differential equation that contains an “arbitrary constant” C.

For example, in Example 1,y = Ce™ % (C # 0 is a constant is a general solution.

e Singular solution: Exceptional solutions cannot be obtained from the general solution.

In Example 1, y = 0 is a singular solution.

e Implicit solution The equation K (x,y) = 0is commonly called an implicit solution of a differential
equation if it is satisfied (on some interval) by some solution y = y(x) of the differential equation.

For example, in Example 1, In |y| = e~ 5% ++ C'is an implicit solution



Example 2. Find solutions of the differential equation 2\/5% =v1—-y
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Example 3. Find the particular solution if the initial value problem
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Natural Growth and Decay

The differential equation

d
d—f = kx (k a constant ) (4)

serves as a mathematical model for a remarkably wide range of natural phenomena.
Population Growth

e Suppose that P(t) is the size of a population, say of humans, or insects, or bacteria, having constant birth
and death rates 3 and §.

® These rates are measured in births or deaths per individual per unit of time.

e Then during a short time interval At, there occur roughly

BP(t)At  births (5)
and
dP(t)At deaths. (6)
e So the change in P(t) is approximately
AP =~ (8 —0)P(t)At (7)
and therefore

wherek = 8 — 4.
e Thus the population P(t) satisfies our differential equation

dP

— = kP 9)



Example 4 (Population growth) In a certain culture of bacteria, the number of bacteria increased sixfold in 10h.
How long did it take for the population to double?
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Radioactive Decay

e Consider a sample of material that contains N (¢) atoms of a certain radioactive isotope at time ¢.

e |t has been observed that a constant fraction of these radioactive atoms will spontaneously decay during
each unit of time.

e Thus mathematically, the sample behaves like a population with a constant death rate and no births,
leading once again
to our differential equation

dN
—— = kN 10
o (10)

e The value of k depends on the particular radioactive isotope.

Example 5 (Natural decay) A specimen of charcoal found at Stonehenge turns out to contain 63% as much “o
as a sample of present-day charcoal of equal mass. What is the age of the sample?
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Cooling and Heating

According to Newton's law of cooling, the time rate of change of the temperature T'(t) of a body immersed in
a medium of constant temperature A is proportional to the difference A — T, i.e.,

dT

= k(A-T) (11)

where k is a positive constant.
Example 6

e A4-lb roast, initially at 50°F, is placed in a 375°F oven at 5 : 00 P.M.
e After 75 minutes it is found that the temperature T'(¢) of the roast is 125°F.
e When will the roast be 150°F, that is, medium rare?
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