1.2 Integrals as General and Particular Solutions

Integrating Both Sides

d
® The first-order equation Eg = f(z,y) takes an especially simple form if the right-hand-side function f

does not actually involve the dependent variable y, so
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® |n this special case we need only integrate both sides of the equation to obtain

y(x) = / f(e)de 1 C 2)

e This is a general solution of the differential equation, meaning that it involves an arbitrary constant C,
and for every choice of C'it is a solution of the differential equation.

Example 1 Find a function y = f(z) satisfying the given differential equation and the prescribed initial
condition.
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Let's look at the graph of the general solution
y=+z* -2z +4z+C
and the particular solution
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Example 2 Find a function y = f(z) satisfying the given differential equation and the prescribed initial
condition.
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Example 3 Find a function y = f(z) satisfying the given differential equation and the prescribed initial
condition.
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Exercise 4 Solution will be posted in the complete notes.



Find the position function x(t) of a moving particle with the given acceleration a(t), initial position g = x(0),
and initial velocity vg = v(0).
a(t) =2t+1,v9 = -7, ¢ = 4.
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Example 5 A particle starts at the origin and travels along the z-axis with the velocity function v(t) whose
graph is shown in the Figure below. Sketch the graph of the resulting position function x(¢) for 0 < ¢ < 10.
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Example 6 A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a building 30

m high. Neglect air resistance.

(a) Find the maximum height above the ground that the ball reaches.<=> W}m-{ is RE) whan ViE£) = o

(b) Assuming that the ball misses the building on the way down, find the time that it hits the ground<=> whodt 's ¢
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Example 7 At noon a car starts from rest at point A and proceeds with constant acceleration along a straight
road toward point C, 35 miles away. If the constantly accelerated car arrives at C with a velocity of 60 mi/h, at
what time does it arrive at C?
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